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Introduction

Signposts Throughout the Course Book

Welcome

This course book contains the core content for this course. Additional learning materials can
be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sections.
Each section contains only one new key concept to allow you to quickly and efficiently add
new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the concepts
in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of the
questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-

plete the evaluation prior to registering for the assessment.

Good luck!
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Statistical analysis and understanding are the foundations of data-driven methods and
machine learning approaches. “Statistics: Inferential Statistics” gives a thorough introduc-
tion to point estimators and discusses various techniques to estimate and optimize parame-
ters. Special focus is given to a detailed discussion of both statistical and systematic uncer-
tainties as well as propagation of uncertainties. Bayesian statistics is fundamental to data-
driven approaches, and this course takes a close look at Bayesian techniques such as
Bayesian parameter estimation and prior probability functions. Furthermore, this course
gives an in-depth overview of statistical testing and decision theory, focusing on aspects
such as A/B testing, hypothesis testing, p-values, and multiple testing, which are fundamen-
tal to statistical analysis approaches in a broad range of practical applications.

The contents of this course book will teach you to understand point estimation methods,
apply maximum likelihood and ordinary least squares method to estimate parameters, com-
prehend the concept of statistical and systematic errors, employ error propagation methods,
utilize Bayesian inference and non-parametric techniques, evaluate statistical tests, and
grasp the fundamentals of statistical decision theory.

9



Unit 1

Point Estimation

STUDY GOALS

On completion of this unit, you will have learned...
. how to estimate parameters using the method of moments, maximum likelihood,
ordinary least squares, and re-sampling techniques.
. how to determine if a statistic is sufficient for estimating a parameter.

. the definitions and interpretations of the likelihood, log-likelihood, and negative log-
likelihood functions.

. the assumptions required to determine the ordinary-least-squares estimates for model/
function parameters.

. how to use the bootstrap and jackknife techniques to point estimates.

. how to estimate the uncertainties using bootstrap and jackknife techniques.
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Unit 1

Point Estimation

Introduction

Suppose we have a sample of 100 numbers that came from an exponential distribution.
Remember that the exponential distribution is characterized by its rate parameter \. In
other words, once we know this parameter, we know everything there is to know about
the distribution. How can we use the sample to find an estimate for \? Once we find
the estimate, how can we evaluate the quality of the method (estimator) we used? Is
there a lot of uncertainty associated with this method? Can we throw away the sample
once we have our estimate, or will the individual data points still provide some more
information? This unit will help us answer such questions.

Statistical inference is about using information contained from an observed sample to
draw inference about the population from which the sample was taken. Populations are
characterized by numerical measures called parameters. The objective of point estima-
tion is to estimate the relevant parameters. Many results from probability play an
important role in the tools we develop and use in statistical inference. As such, we will
review and remind you of the relevant results from probability where it is appropriate.

In the first section, we will learn how to use the the method of moments to find point
estimates of parameters of interests. In this method, we relate the parameter of inter-
est to the moments of the underlying distribution and then use the associated sample
moments to build the estimator. In the next section, we learn how to figure out if an
aggregate quantity (a statistic), based on the data, captured all the relevant information
about the parameter of interest we are aiming to estimate. Such a quantity will be
called a sufficient statistic.

In section 1.3, we develop an alternative method to estimate parameters of interest: the
method of maximum likelihood. At a high-level, this method aims to find an estimate
of the parameter of interest by maximizing the likelihood of observing the given data.
We explore one of the most commonly used functions in statistics, the likelihood func-
tion, and how this quantifies the strategy of finding the point estimate.

In the next section, we introduce the general idea behind ordinary least squares. You
may have seen this method applied to simple regression. The advantage this method
has over maximum likelihood is that we don't need to know anything about the distri-
bution that generated the given data. Instead, we just need to know the functional or
model dependence.

Finally, in section 1.5, we explore two popular re-sampling techniques: the bootstrap
and the jackknife. Although their application is vast, we focus on how to make use of
the given data in a number of ways to come up with estimates for the parameters of
interest without knowing the underlying distribution. The two advantages that come
with using these techniques is that (i) they work quite well with small samples sizes
where the central limit theorem may not apply and (ii) it provides estimates of the
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uncertainties associated with the estimates. In summary, this unit will provide a variety
of ways you can use sample data to compute point (single number) estimates of
unknown quantities which describe the data.

1.1 Method of Moments

The method of moments is one of the simplest techniques for deriving point estima-
tors. As the name suggests, it is related to the moments of a random variable. Let X be
a random variable; its first moment is just its expectation p = ull) = [E[X]. Its second
moment is the expectation of its square p(2) = [E[XQ]. In general, the kth moment is
given by

Let's start with the first moment and replace the expectation E with the average as fol-
lows. Take n copies of the random variable X and denote these copies by X, X, ..., X,
The (first) sample moment is then

This equation is an estimator of the first moment. An estimator is a random variable
that aims to estimate an unknown but non-random parameter. If we have observed n
realizations of X, a random sample, given by xq,xs,...,x,, then we can compute the
estimate of the first moment based on this data by replacing each X; with x; to get the
following equation:

Notice that while the estimator 5(!) is a random variable, the estimate (1) is non-ran-
dom. We can get analogous equations for the estimators and estimates of higher
moments. The sample ,*® moment estimator is

& 1~k
i=

and the corresponding estimate based on the observed data is

)1
= >:H,leik
1=

Unit 1
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Unit 1

Example 111
Compute the first and second sample moments of the observed data shown in the
table below.

Sample Data for Example 111

Solution
We will use equations for ;1) and (%) with this data. The first sample moment is

—(1)_ 1 _5 _
m _10[1+2+ +10]_10_5.5
The second sample moment is
PNCII WS SPC T B -
m _101 +27°4--+10 —10—38.5

One of the primary tasks in this section is to estimate one or more parameters of a dis-
tribution. We need to find a way to relate the unknown parameters to one or more
moments. Once this is done, we can use the sample moments to estimate the unknown
parameter(s). To this end, let's start with a simple example.

Example 1.1.2

Let Xy, Xy, ..., X,, be a random sample (independent variables) from the uniform distri-
bution [0, 6], where 0 is unknown. Use the method of moments to find an estimator of
0. Next, use the data given below to estimate 6 using the estimator you found.

Sample Data for Example 11.2

0.6 0.2 39 31 3.8 1.6 1.0 13 3.0 3.2

Solution
Recall that for X~2[a, b, the first moment is p(1) = [E[X} = . In this case, we have
M(D = % and replacing u(1> «— w1V gives § = 2m. Therefore, the estimator we get is

a+b

~ 92&
h=12.%

i=1

Next, given the observed data, we can compute the estimate by
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6:§ﬂ16+02+m+3ahz434

We want to explore the performance of the method of moments estimator for various
sample sizes:

{10, 100, 1,000, 10, 000, 100, 000}

We simulate 100 samples from 2(0,5) corresponding to each of these samples and
compute the method of moments estimate for 6 from example 11.2. Explore the figure
below and note the variation of the estimates for various sample sizes. In the first plot,
each point is a method of moments estimate for 9, with the value of this estimate on
the vertical axis and the size of the sample used to estimate it on the horizontal axis.
The various sample sizes are color coded. Note how the points are scattered for N = 10,
less scattered for N = 100, and eventually, as N is increased, the 100 estimates cluster
very tightly around the true value of 5.

In the middle plot, we have histograms of these points. The value of the estimate is on
the horizontal axis and the frequency of the bins are on the vertical axis. Note that val-
ues far from the center are less likely for larger values of N, and the shape of the dis-
tribution is symmetrical and resembles the Gaussian distribution.

In the final plot, we calculate the sample variance of each of the 100 estimates from
each of the samples sizes. In other words, each point represents the sample variance of
100 estimates of § with the vertical axis showing the values of the sample variance and
the horizontal axis showing the number of points used to generate each of the 100
estimates. As you can see, when N is large, the sample variance is small, confirming the
clustering behavior we observed in the two plots above.

Unit 1

15



16

Unit 1

Method of Moments Estimates for 6 from 2/ (0, 6).

=53

True # = 5 (Scatter Plot of Estimates)
Sl
'
6-
54 | ] (]
4_ L]
3 ) -
10 10? 10° 10* 10°
n: Sample size
N=10
N =100
N =1000
N=10000

N =100000
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Method of Moments Estimates for ¢/ from 2( (0, 0).

True /) = 5 (Histograms of Estimates)

N=10
N=100
N=1000
N=10000
N =100000
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Method of Moments Estimates for 6 from 2/ (0, 6).

True # = 5 (Variance of Estimates)

Sample
variance
of @

1.0
0.8
0.6
0.4

0.2

n: Sample size

The next example is the geometric distribution. Recall that the geometric distribution
models the number of failures before the first success occurs. If X~Geometric(p), then
its expectation is E[X} = %.

Example 11.3

Let Xy, Xy, ..., X}, be iid from Geometric(p). Find the method of moments estimator for
p. Use the data below to find the estimate for p. Recall that iid stands for “independ-
ently and identically distributed.”

Sample Data for Example 11.3

0 2 5 1 7 4 1 0 3 0

Solution
As stated above, [E[X] = “Tp for X~Geometric(p). Thus, the sample moment estimator
gives
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Using the given data, the estimate for p is given by

b= 1 — 110 5 303

1+3s0+2+-3+0 143 33

Similar to the simulation for example 11.2, we simulate sets of 100 samples of various
sample sizes and compute the method of moment estimates from example 11.3.
Explore the figure below and note the characteristics of the method of moment esti-
mates for various sample sizes.

Method of Moments Estimates for ¢ from Geometric (p).

True p = 0.4 (Scatter Plot of Estimates)

0.8+
0.7

0.6

o

0.5

04{ : | - .

0.3

10’ 10% 10° 10* 10°
n: Sample size

- N=10

- N=100

- N=1000

- N=10000
- N=100000

Unit 1

19
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Method of Moments Estimates for ¢ from Geometric (p).
True p = 0.4 (Histograms of Estimates)

=

N=10

N =100

N =1000

N =10000
N =100000
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Method of Moments Estimates for ¢ from Geometric (p).

True p = 0.4 (vVariance of Estimates)

Sample
variance
of p

0.0150 -
0.0125
0.0100 -
0.0075 -
0.0050 -

0.0025 -

0.0000 - .

T T T

10 102 10°

05

e

0&

=

n: Sample size

In all the examples discussed thus far, the first moment was sufficient to obtain an
estimator for the unknown parameter. We now discuss an example where we must use
the second moment. Recall that the variance of a random variable is
\/[X] — [EX—[E[ ” [X} [X]2 If X follows a Gaussian distribution, X~N(u, o),
then E[X] = =o?

Example 1.1.4
Let Xy, . . ., X, beiid from N (0, 5). Find the method of moments estimator for 2.

Solution
Since p = 0, we have ¢2 = E[XQ]; therefore, the method of moments estimator for o is

— ——ZX

Example 1.1.5
Let Xy, ..., X, be iid from N (p, o) with unkown p and unknown o. Find the method of

moments estimator for p and o.

Solution
We know that for X~N(p,0), E[X]=p, and V[X] = o2 Therefore, the method of
moments estimators are given by

Unit 1

21
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Unbiased estimator
An estimator is said
to be unbiased if
and only if its expec-
ted value agrees
with the the target
parameter.

Unbiasedness

In addition to providing a way to estimate unknown parameters, point estimates have
certain properties with which we evaluate their quality. One of the dimensions along
which we evaluate a point estimator is whether they are unbiased. The estimator for ¢
in 2£[0, 6] from example 11.2 was given by

1

RPN

i=1

The expectation of this estimator is

Therefore, this estimator is unbiased.

Example 1.1.6
Show that the estimator for p from example 11.5 is unbiased.

Solution
Once again, we just need to compute the expectation of the estimator

Therefore, the estimator is unbiased.

The statistic %Zin: 1X; comes up frequently. This statistic is called the sample mean
estimator and will be denoted by X or X,,. The latter notation is used to explicitly show
the size of the sample. In short, we have defined

X:Xn

1 ik
L= HZX

i
i=1

To summarize, we have seen that X is an unbiased estimator for . for the Gaussian dis-
tribution.
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Some estimators that come from the method of moments are unbiased, but some are
not. Before we give an example of a biased estimator, we need to discuss some prelimi-
nary results from probability.

The variance of a sum of independent random variables is the sum of the variances
V[X; + X,] = V[Xy] 4 - + V[X,]. Also, the variance of non-random multiples of a ran-

dom variable is the square of the multiple times the variance of the random variable
Ve - X] = ¢?V[X]. Using these two facts, we can compute the variance of X,,.

VX = 5 3 VIX)

Now recall that V[X] = E[X?] — E[X]? Therefore, E[X? = V[X] + E[X]? Using this fact,
the second moment of X is computed as follows

Example 1.1.7
Show that the estimator for 52 from example 11.5 is biased.

Solution
We will compute the expectation of %

o] - 15" i — €[]

i=1
1< 2
:HEZWBJ+Hxﬁ—F%+ﬁ)
i=1
1 & 2
=52 (o +u?) - (% + uz)
i=1
1 2,2 o? |
=0 (o? ) - ;+u)
2
_ 2 )
=0’ P ———p

_n—1
" n

o%( # o2 forn > 1)

Unit 1 23

Sample mean esti-
mator

This random variable
estimates the mean
of the distribution
from which a sample
is drawn by comput-
ing the quotient
between the sum of
the variables and
the sample size.
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Sample variance
This random variable
acts as an estimator
of the variance of a
distribution from
which a random
sample is drawn.

Statistic

This random variable
is defined by a func-
tion of a random
sample, usually to
estimate an
unknown parameter
of interest.

Sufficient statistic
This statistic con-
tains all the infor-
mation a random
sample provides
with respect to esti-
mating an unknown
parameter of inter-
est.

We have established that the estimator is biased.

The factor 2=L is what makes the estimator biased. Therefore, if we multiply the esti-

n
mator ﬁ the resulting estimator will be unbiased:

1 & 2 =
LT
=1

2
S, =

This unbiased estimator, Sn2 for 42 is called the sample variance. In fact, the estimator
X, and sn2 are unbiased estimators of the population mean and variance respectively,
whether or not the distribution is Gaussian.

1.2 Sufficient Statistics

In the previous section, we defined two important estimators, the sample mean (X) and
the sample variance (Snz). These two quantities summarize all the information about
the respective parameters (population mean and variance) that the sample contains. In
other words, once we have these quantities, the individual values from the sample data
play no role in providing additional information about the parameters of interest. In
this sense, the statistics X and sm2 are said to be sufficient. Before defining what is a
sufficient statistic, let's recall the definition of a statistic.

Let Xy, ..., X,, be a sequence of random variables. A statistic of this sequence is a func-
tion g:R" — R of Xy,...,X,,. In other words, if U is a statistic of this sequence, then
U= g<X1a -~-7Xn>-

Given a sample Xy, . . ., X,, the sample mean, X,, and the sample variance sn2 are two
examples of statistics of this sample. We can also define other statistics. One example
is the maximum X, .., another is the minimum X,,;5, and yet another is the median
Xonid- All of these are functions of the random sample and therefore statistics. Depend-
ing on the parameter of interest, some of these quantities are sufficient and some are
not. We are now ready to define sufficient statistics (Hogg et al., 2019).

Let X4, ..., X, be iid from a probability distribution characterized by an unknown param-
eter 9. A statistic U is said to be sufficient for 6 if the conditional distribution of
Xy, ..., X, given U, is independent of 6.

Example 1.21
Suppose that we have a small sample of just two: Xy, Xs iid from Bernoulli(p) with
unknown p. Show that the sample mean U = X 4+ Xy is a sufficient statistic for p.

Solution
Since the variables are independent, the joint PMF of Xy, X5 is just the product of the
individual densities:
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1— 1—
fxp %X x0)= p (1 —p) L.p2(1-p)

_ le +X2<1 _ p)?— (X1 +x2)

Now for the PMF of U, note that U~Binomial(2, p):

The joint conditional density of (X, Xy)|U = u is given by

fx,, XZ(XL XQ)
fyy(u)
pxl + X2(1 N p)2 - (Xl + X2>

(2)p(1—p)* "
pi(1—p)? W
(Z)p(—p)* "

1

()

Since this joint conditional density doesn’t depend on p, the statistic U =X; + Xy is a
sufficient statistic for this parameter (p).

f(x1,%9|U = u)=

It may be quite difficult to find the distribution of a statistic U. This makes it difficult to
know if U is a sufficient statistic for estimating some unknown parameter 9. To circum-
vent this challenge, we will introduce a result that will help us not only determine
whether a given statistic is sufficient for estimating a parameter but may help us deter-
mine a sufficient statistic. We need one more concept before introducing this result.

The joint distribution of a sequence of random variables plays a key role in many stat-
istical inference applications. When this joint distribution depends on a(n) unknown
parameter(s), it can be viewed as a function of the parameter(s). This function is the
likelihood of observing the data as a function of the parameter(s). Here is the formal
definition:

Let xq,...,x, be a sample of observations from the sequence of random variables
Xy, ..., X,. Suppose that the distribution of each X; (for i = 1,...,n) depends on some

unknown parameter(s) 6. The likelihood of the sample data is the joint density (PMF) of
X1y, ..., X, evaluated at xy, ..., X,,. The likelihood function is given by

€(0) = €(xq,...,x,|0) = lew_an(Xl, ...,Xn‘9>

where f denotes the joint density.

Unit 1 25

Likelihood

This is a quantified
value of how likely a
given sample is to
be observed.

Likelihood function
This function com-
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putes how likely a
given sample is to
be observed based
on a value of the
parameter(s) of
interest.

Suppose that the random variables Xy, . . ., X, are independent and the distribution
of each depends on unknown parameter(s) 6; i = 1, ...,n. Denote the density of X; by
f(x]0;). Then, the likelihood function of the sample data xy,...,x, observed from the
X,'s is again the joint density. Since the X;'s are independent, the joint density is just
the product of the marginals. Therefore, the likelihood function is given by

n

(01, ,0,) = E(xp, 00, 07,00, 0,) = T £l 6;)
i=1

In practice, it is often the case when the observed data are independent and from
identically distributed random variables. In other words, we have a random sample
Xy,...,X, observed from Xy,...,X,, iid. The distribution of each Xj, i=1,...,,n, is the
same and the density (PMF) depends on a(n) unknown parameter(s) 6. To write the like-
lihood function in this simple case, we can just use the the result of the equation
above without the need for subscripts. This is because f; = f; for all i, j. To summarize,
the likelihood function for sample data observed from an independent and identically
distributed random variables is given by

1

£(0) = t(xq,...,x,]0) = _H f(x;]0)

i=1

Example 1.2.2
Write down the likelihood function of the iid sample {2,3,2,1} from a Poisson distribu-
tion with unknown parameter \. Recall that the PMF of X~Poisson(\) is given by

e\
fx(x|\) = x!

0, otherwise

 x=0,1,2,...

Solution
Since the sample is iid, we can use the equation above to write the likelihood function:

N = €(xq, ..., x4|N)
4

JJRETRY

1

i =
- ]
X.
i=1
oK1 T X2t X3y

xp! - x9l - xgl - xy!
O\
24
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Now consider the statistic U = X; + Xy + X3+ X, for the previous example. Is this sta-
tistic sufficient for estimating \? As mentioned above, applying the definition of suffi-
cient statistic involves finding the distribution of U, which may be difficult. Now that we
are equipped with some knowledge about the likelihood function, we can use an
important result based on this tool. This result makes the connection of the likelihood
function and whether or not a statistic is sufficient to estimate an unknown parameter.
The following can be found in Hogg et al. (2019).

Theorem 1.21

Suppose Xy, ...,X, is a random sample, xy,...,x, of the corresponding observed data,
and U a statistic. Let €(0) = €(0|xy,...,x,) be the likelihood function. U is a sufficient
statistic for estimating 6 if and only if ¢(-) can be factored into a product of two non-
negative functions as

f(e> = g(u7 e) ' h(Xl? "'7Xn)
where g(u, 0) doesn't depend on the observed data, and h doesn't dependent on 6.

Let's now return to our original question: is the statistic U = X + Xy + X3+ X + 4 suf-
ficient for estimating X in example 1.21? Based on the previous result, we have to check
whether the likelihood function enjoys a specific form of factorization:

— 4N\ X] t X9 +Xx3+x4
e\ VNG
t(\) = <l xal o1 & A
1782723724 g(u,N\)

1

X1! . X2! . X3! . X4!

h(xq, x9,x3, X4)

Indeed, g doesn't depend on the data except via u, and h doesn't depend on \. Accord-
ing to this theorem, the U is a sufficient statistic for estimating \. As a matter of fact,
we can extend this result for an arbitrary sample size. Let Xy, ...,X, denote a random
sample from a Poisson distribution with parameter \. U = 37i'_ | X, is a sufficient sta-
tistic for \.

Example 1.2.3

Let Xy,...,X;, be a random sample from a Gaussian distribution with unknown mean p
and known variance 2. Show that the sample mean estimator U = X is a sufficient sta-
tistic for estimating p. Recall that the density of a Gaussian X~N(p, o) is given by

(x—p’
2

20

1
Flelin o) = o=y -
0"

Solution
We start by writing the likelihood function for an observed sample xy,...,x, corre-
sponding to Xy, ..., Xy;:

Unit 1
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f(H): f(xla X, 0 | H)

2
20°/—
:(21’(0‘2)_11/26Xp _Ly <2+ 5 En X; — En ug)
2 1 2 1 2
20 (o 20% =

Now set u = X = %Z 1 X, so that nu = S X;. The likelihood function can be writ-
ten as

£(n)= (2n02) " %ex (

Z 2+— nu—21 sz

i=1 o? i=1

1 1

g(u, ) h(xl, e n)

= (202”[()711/26}(1) - exp

Therefore, according to the factorization criterion, we know that U = X is a sufficient
statistic for estimating p when 52 is known.

With a similar computation, it can be shown that U = 121,1( )2 is a suffi-
cient statlst|c for estimating 02 when y is known. Finally, U, = X——Zf‘_lX and
Uy=8,° = 12?_ L(X; —X)? are jointly sufficient statistic for estimating p and

To use the factonzatlon criterion to establish joint sufficient statistics, Uy and U, for
estimating parameters 6; and 6, we just replace g(u, §) with g(uy, uy, 61, 05).

1.3 Maximum Likelihood

The likelihood function measures the likelihood of observing a given sample as a func-
tion of a (possibly unknown) parameter. Suppose we are given observed data xg, ..., X,
corresponding to Xy, ...,X,, whose distribution depend on an unknown parameter .
The likelihood function gives us a way of determining which value of § among a set of
possible values, best suits our observed sample. In other words, if we have two esti-

mates of 0, 61 and 62, such that f(@ ) > f( ) then the given data has a higher likeli-
hood of being observed from a distribution with parameter § = 6, than from a distribu-
tion with parameter § = @2. Therefore, if these were our only choices for 9, we would
choose 61 as a point estimate for 9. In this way, we would have used the method of
maximum likelihood to determine the point estimate for 6. The estimator
'é(MLE) - 9<MLE) is called the maximum likelihood estimator for 9. Analo-

(X0 Xn)
gously, 6(MLE> M B) (X1» ., x,) Is called the maximum likelihood estimate variable.
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Example 1.31

Suppose that the sample given below is iid from Poisson distribution with unknown
parameter X. Write down the likelihood function for this sample. Determine which of
the two values {3,4} makes the observed data more likely.

Sample Data for Example 1.3

6 5 6 1 3 6 3 3 2 2

Solution
The likelihood function is

—100 37
0 =
3.87 x 10
We compute the likelihood at these values: ¢(3)=1.09x10"? and

£(4) = 2.07 x 1072 Since €(4) > €(3), X = 4 is a better likelihood estimate for X\ than
=3

Continuing from the solution of example 131, in practice, there aren't only two choices
for the parameter, there is a continuous range of choices. We definitely can't try all pos-
sible values! Instead, we use calculus to find the maximum of the likelihood function.
This value is called the maximum likelihood estimate for X\. The figure below shows the
graph of the likelihood function ¢(X\) from example 1.31. It has the values of the param-
eter X\ on the horizontal axis and the likelihood values on the vertical axis. Our goal is
to locate the peak (maximum) of this function and then read where this peak occurs on
the horizontal axis. In our case, this occurs at 3.7. For this reason, we can denote this
as our maximum likelihood estimate: YMEE) _

Unit 1 29

Maximum likelihood
estimator

This function of a
random sample
maximizes the likeli-
hood function. Note
that this is a random
variable.

Maximum Likelihood
Estimator

A function of an
observed sample
which maximizes the
likelihood function.
Note that this is a
non-random quan-
tity.

Maximum likelihood
estimate

This function of an
observed sample
maximizes the likeli-
hood function. Note
that this is a non-
random quantity.
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Log-Likelihood

The (natural) loga-
rithm of the likeli-
hood function
admits the same
maximizer as the
likelihood function
but is easier to work
with.

Likelihood Function for Poisson Sample from Example 1.3.1

1e-9
2.0 1
1.5
Likelihood:

LN 1.0
0.5 -
001 ] — i ]

2.0 3.0 3.7 4.0 5.0 6.0
A

Recall that the map z = logz is non-decreasing for z > 0. Therefore, the maximizer of
the log-likelihood, €€ (\) = logf (\) is the same as that of the likelihood #(X\). Moreover,
the log-likelihood is easier to work with because it converts products into sums of log-
arithms; differentiating sums is much easier than differentiating products. In practice,
we use computer algorithms to find the maximizer of functions. The likelihood function
deals with very small numbers (in magnitude), and we might run into underflow prob-
lems where the values we work with are smaller than the smallest number that a com-
puter can represent. The log-likelihood values, on the other hand, avoid small magni-
tude numbers and are better suited to numerical schemes.

Take a look at the figure below, which shows the log-likelihood function for this Pois-
son example. Similar to the graph of the likelihood function, the values of the parame-
ter (\) are on the horizontal axis. The values on the vertical axis have the values of the
log-likelihood function €¢(X\). As with the likelihood function, we are interested in
locating the value on the x-axis where the maximum occurs. This will be the same
value as we get from the likelihood graph.
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Log-Likelihood Function for Poisson Sample from Example 1.3.1

Log-
Likelihood:
o\)

2.0 3.0 37 40 5.0 6.0

The log-likelihood function corresponding to likelihood from the solution of example
1.311is given by

t¢(N\) =log ¢ (N\) = —10X\+ 37log\ — 13log(3.87)
Its first and second derivatives are

£V = —10+ 3L and ee(n)” = — 37
N )\2

respectively. Since €¢”"(\) < 0 for every X, we know that any zero of ¢’() is a local maxi-
mizer. In this instance, £¢/() admits exactly one zero:

0= —10+%<:>>\=3.7

Therefore, \MLE) _ 5 - is the (global) maximizer of the log-likelihood and therefore of
the likelihood. For this reason, we have denoted it as the maximum likelihood estimate
for X\. Any maximizer of a function ¢ is the minimizer of —¢. Since most optimization
algorithms are written for minimizing functions, in practice we often work with the neg-
ative log-likelihood function, which is

ntt(0) = —¢6(0) = —log ¢(0)
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Negative log-likeli-
hood

With the negative of
the log-likelihood
function, numerical
schemes are written
to minimize objec-
tive function, as
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such, the negative
log-likelihood is
used in practice. The
minimizer of this
function is the same
as the maximizer of
the log-likelihood
(and likelihood)
function.

The figure below shows the graph of the negative log-likelihood function for the Pois-
son example. The shape of this graph is the inverted shape of the log-likelihood func-
tion. Therefore, using this function, we can locate the MLE by finding the minimum.
Notice that 3.7 is the minimizer of this function. For the rest of this section, we will find
MLE point estimator/estimates by working with the negative log-likelihood.

Negative Log-Likelihood Function for Poisson Sample from Example 1.3

25

_ 24 A
Negative

log- 23 -
likelihood:

ntd(\) 22 -

21 -

20 - f
2.0 3.0 3.7 40 5.0 6.0
A

Example 1.3.2

Consider the random sample Xi,...,X, iid from the exponential distribution with
unknown rate \. Find the MLE estimator by minimizing the negative log-likelihood func-
tion. Recall that the density of X~Exp(\) is given by

— X
fX(X)—{Xe x=0 .
0, otherwise

Solution
The likelihood function corresponding to an observed sample of D = {x;,...,x,} is
given by

e =¢@N =[] [Xe*“i] — Nlexp
i=1

The negative log-likelihood function is

ntt(N) = —log ¢ ()= —nlogh+ XY x;
i=1
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As before, we find the zero(s) of the first derivative:

n
n MLE 1
0= ——+ g X < —*—E X e—
A i=1 A i=1 ;E:?:lxi

The second derivative will confirm that this is the minimizer and therefore, the MLE
estimate is indeed the expression above. The corresponding MLE estimator for the rate
of an exponential sample is

X(MLE) _ 1

1
=YX

Example 1.3.3

Suppose that we want to estimate the probability of heads, p, of a coin. We toss a coin
n times and denote X; =1 if the coin turns up heads and X; = 0 if the coin turns up
tails. Thus we have a sequence Xy, ..., X,,. Let xq, ..., x,, denote observed values. Find the
MLE estimate and estimator for p.

Solution

Assuming coin tosses are independent, and since we are using the same coin, we have
Xy, ..., X}, are iid from Bernoulli(p). Recall that the PMF for X~Bernoulli(p) is given by

X 1—x —
fX(X)_[p (1-p)' "% x=01
0, otherwise

The likelihood of the sample is

1—x
n i
t(p)=[]p%1—-p
i=1
The negative log-likelihood is
ntt(p Z xlogp + (1 — x;)log(1 —p))
1
=nlog|1 —p| + (logp — log(1 — p)) Z X;
i=1

log(1 —p) + n(logp — log(1 — p))x

|
=]

where we have set x = %Z?: 1x;- Next, we find the zero(s) of the negative log-likeli-
hood function:

33
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0= ———+n

( 1 1 ), o 5(MLE)
1—p p

_+—X
p 1l-p

Computing the second derivative of the n¢¢(p) will confirm that this is indeed the
minimizer we are looking for and therefore the maximum likelihood estimate. The cor-
responding maximum likelihood estimator is

Uncertainties of MLE

To evaluate the %;IJLaElity of an estimator §™MLE) we need to look at their associated
uncertainty: Vv e( ) Recall that the variance of X~Bernoulli(p) is given by
V[X] = p(1 — p). Since the Xj's from the coin toss example are independent, we have

n==
1 1
=— > p(l1—p)
=
1
=— -np(l —p)
1n
_p(l—p)
n

Since we don't actually know p, we can estimate the variance with

~(MLE)(1

B 5(MLE))

~
~

W[ﬁ(MLE)]

n

As it turns out, we don't need to compute the uncertainty directly this way. The uncer-
tainty associated with an MLE is the reciprocal of the expected value of the second
derivative of the negative log-likelihood evaluated at the MLE:

~MLE 1
vt~ E{Wf”(eng MLE

Additionally, this approximation gets better and better for larger values of n. Let's apply
this to our coin-toss example. The second derivative of the negative log-likelihood for
the coin toss example is

1 1
ot 2
p°  (1—-p)

ntt’(p) = — —>——+4n
(1-p)*
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Taking the expectations on both sides (recall that E[X] = p),

Elntt”(p)] = —

Finally, using equation for computing the variance of the MLE, we have

~(MLE) ~(MLE)
VBB -5
p n
. . . ~(MLE)(1,~(MLE))
The corresponding standard deviation can be estimated as _ _ 4/ P .In
the figure below, we plot the negative log-likelihood function for a random sample

from Bernoulli(p) and highlight the estimate p using the result of example 1.3.2 as well
as the estimates p 4 o. Once again, the MLE estimate of p is the minimizer of this func-
tion.

Negative Log-Likelihood for a Bernoulli Sample Showing p + o

30 -

25 -

Negative 20

log-likelihood:

ntl(p) 15 1

10 -

0 0441 0583 0725 1
p—a p p+ao
True p= 0.6

Example 1.3.4
Use the formula for the variance of MLE to approximate the uncertainty associated with
the MLE estimate for X from example 1.3.1.

Solution
We start by writing down the negative log-likelihood function using the result from the
equation in example 1.31,

Unit 1
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nt€t(\) = 10X\ — 37log\ + 13log(3.87)

The derivatives are

and
nte"\ = i—;

Now, applying the equation for the variance of MLE, we have

[~(MLE)} 1

VIX ~ =0.37

T 37/3.77

Therefore, 6 =+/3.7 ~ 0.608

The figure below shows the negative log-likelihood plot. The MLE estimate is the mini-
mizer of this function. The figure also shows a range over estimates within one stand-
ard deviation of the MLE.

Negative Log-Likelihood for a Poisson Sample Showing \ + o

25 -

; 24 A
Negative

log- 23 -
likelihood:

nfe(\) 22

21

201 |

2 3;092 3.700 4308 6
A—o X At o

— True A=3.3
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1.4 Ordinary Least Squares

The method of maximum likelihood requires knowledge about the underlying distribu-
tion that generated the sample data. This distribution is used to find the maximum
likelihood estimate of the unknown parameter of interest. In contrast, the ordinary
least squares method doesn't require that we know this underlying distribution;
instead, we need to know the model that generated the data.

A manufacturing facility fabricates aluminum cans. A new camera based measurement
system is to be deployed to measure the diameter of the produced cans for quality
assurance. Before deploying this system into production, a test is designed to measure
the accuracy of the camera (image)-based measurement system. A single aluminum
can with a diameter of five centimenters is used during this test. The measurement sys-
tem is used to measure the diameter of this can in various conditions.

Ten measurements from the camera system are recorded
{1, v10} = {5.13,5.07,4.85,5.00,5.06,4.93,5.03,5.01,5.00,4.98}. In order to
assess the quality of this system, we compute the difference (residuals) between these
measurements and the known true value of y = 5. To penalize larger residuals more
than smaller residuals, we compute the squares of the residuals: (y_yi)Q, Finally, we
sum these squared residuals to get a measure of the quality of the camera-based
measurement system. The computations are shown in the table below.

Observed Measurements, Residuals, and Squared-Residuals

Yi Yy - ¥i (y — v1)?
513 ~013 0.0169
5.07 -0.07 0.0049
4.85 0.5 0.0225
5.00 0.00 0.0000
5.06 ~0.06 0.0036
4.93 0.07 0.0049
5.03 -0.03 0.0009

5.01 -0.01 0.0001
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Observed Measurements, Residuals, and Squared-Residuals
5.00 0.00 0.0000

498 0.02 0.0004

The sum of squared residuals is Ziw: 1(}’—}’1)2 —=0.0542. In the method of ordinary
least squares, our aim to is tweak the model over and over again, until y;'s give us a
lowest sum-of-squares. In practice, the model is based on parameters that we need to
estimate. The way we tweak our model is to adjust the parameters in a way that
reduces the sum-of-squares of the residuals.

Let's say that for our camera example we tweak some of these parameters and get new
measurementSygnew, L ylnew) — {5.095.054.895 . 5.044.955.025.015.4.99}. I we

repeat the computations with this new set of measurements, we get

10 (y_y(“ew))Q —0.0274. Since the new sum of squares is lower than the original

i=1 i

one, we have improved our model. If this is the best this model can achieve, in other
words, if any change to the model's parameters will always result in a higher sum-of-
squares, then this model is said to be the least-squares solution.

Explore the the two figures below which show the measurements and squared-residu-
als, respectively. In the former figure, each point represents a prediction (estimate) for
the diameter of the detected can. The values of the estimates are on the vertical axis.
Estimates are plots in two different colors, where each color is a different model. Notice
that the “new” model has estimates that are less scattered around the target value of
5.0 compared to the other model. In the latter figure, each point from the graphs repre-
sents a prediction where the vertical axis measures the squared residual and the hori-
zontal axis the predicted value. The “new” model has smaller squared residuals, tightly
clustered near zero, compared to the other model.
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Measurements from Two Models
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Now suppose that we have observed {(x;,v1), .., (x4, y4)}. Assume that a functional
dependence between x; and y; exists such that y; = f(x;|0), where ¢ is/are the parame-
ter(s) that completely determines this function. The least-squares estimate §<OLS) mini-
mizes the sum-of-square residuals:

00) = 3 i~ ] 0))

In other words, §(OLS) = minyC(0)- The OLS method will produce a good result assum-

ing that the functional dependence or the model being used is appropriate for the
data. If so, then the OLS estimate of the parameter, which determines the best function
or the best model, would serve the purposes well. However, if the functional or model
dependence is wrong to begin with, then even the OLS estimate for the parameters
would produce a useless result. The figure entitled “Observed Bi-Variate Data” shows
an observed dataset of 100 points. The observed data has two variables, x and y, plot-
ted on the graph as the horizontal and vertical values respectively. The goal is to fit a
curve to this data. In the figure entitled “Cost Functions for Two Models,” we show two
graphs from two cost functions, one from a good model assumption and the other from
a bad model assumption. Notice that the cost function from the good model assump-
tion has values lower than the lowest cost value from the bad model assumption. The
OLS fit for each of these models comes from finding the value of the parameter 6 (on
the horizontal axis), which minimizes the cost C(0) (on the vertical axis). Finally, in the
figure entitled “Fitted Curves for Bi-Variate Data,” we show three curves fitted to the
data. The best fitted curve comes from a good model assumption and the OLS estimate
of 0. The second best model comes from the good model and some other estimate of §
(not the OLS). The worst fitted curve comes from a bad model assumption, even though
we chose the OLS estimate for 0. Therefore, model assumption is very important when
choosing to use OLS to find the point estimates of unknown parameters.
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Observed Bi-Variate Data
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Cost Functions for Two Models

OLS Alother OLS
ggpod' B(Ot J gbad

——— Good model
——— Bad model
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Fitted Curves for Bi-Variate Data

100 -075 -050 -025 0.00 025 050 075 1.00

— Good model;0°~* Good model; 9t

— Bad model; 8°*° . Observed data

1.5 Re-Sampling Techniques

In all of the previous sections, we learned about different ways to estimate an
unknown parameter of the population using an observed sample. When the sample
size is large, the central limit theorem provides a way to measure the uncertainty asso-
ciated with a parameter estimate. If the sample size is not large, but the distribution of
the population from which the sample was drawn is known (except for the unknown
parameter), then we can use properties of that distribution to measure the uncertainty
associated with our point estimate. But what if the sample size is too small to apply the
central limit theorem, and we have no idea about the distribution family of the parent
population? Re-sampling techniques were introduced to address this scenario.

Re-sampling techniques are parameter estimation techniques that use sub-samples of
an observed sample. In this section, we will discuss the bootstrap and jackknife meth-
ods in some detail.

Unit 1
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The Bootstrap

Denote an observed sample by x = (xq,...,x,,). The bootstrap re-sampling procedure
chooses n numbers for the observed sample one after the other and with replacement.
For example, if the observed sample is {1,2,3,4,5}, then a bootstrap sample could be
{5,1,1,3,2}. This procedure is repeated a fixed number of times, which is set in
advance. The table below shows an observed sample along with ten bootstrap sam-
ples.

A Random Sample of Five Numbers and Ten Bootstrap Samples

x 70 29 23 5.5 72
) 23 72 23 29 55
e 23 5.5 29 29 7.0
e 29 29 70 70 29
<@ 5.5 72 70 70 72
<) 29 55 23 72 23
«(6) 72 7.0 70 29 55
G 72 72 72 29 55
«® 23 29 72 70 55
<9 23 70 55 23 23
«(10) 23 23 72 5.5 5.5

Say we want to compute the mean of the population from which the data were
observed. One point estimate would be the sample mean using the observed sample

7.0+294+23+55+72
: =

4.98

X =
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To estimate using the bootstrap method, we would compute the mean of each of the
bootstrap samples (results shown in table below) and then compute the mean of these
means.

10
<(boot) _ % Z _ 4044412 4+ +4.56 ) aqc

10

Sample Means of the Bootstrap Samples from the Previous Table

The benefit of having these (ten) estimates, is that we can use them to figure out the
uncertainty associated with the final estimate %(Poot). In our case, we compute the
squared standard error of the bootstrap estimate as follows:

SR er = 5 3 (x5

(4.04 — 4.98)% + (4.12 — 4.98)% + --(4.56 — 4.98)°
10

=0.925
equivalently, we have SE(X)y,,,; = v/0.925 = 0.9618.

Here is a summary of the general approach using an observed sample given by
x = {xq,...,x,} using B bootstrap samples. First, compute the point estimate of the tar-
get parameter ¢ and denote it by g. Next, for each b from 1 to B, compute the bootstrap
point estimates §(® from x(?) = {OXil,xiQ, ""Xin} where i; are drawn from {1,...,n} with
equal probability and with replacement. Next, compute the uncertainty of the original
point estimate using the bootstrap estimates as the standard error using the formula

SE(0), = 3 3 (1

For a random sample of Xy, ..., Xy, the ordered statistics are given by X(y), ..., X(p) Ordered statistics

where X(1) < X(g) < -+ < X(10). The maximum is thus, Xax = X(10), and the minimum This is an ordering of

is Xinin = X(1)- random variables in
non-descending
order.
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Delete-1 jackknife
replicate

This sub-sample is
obtained by
removed one value
from a given sample.

Example 1.51
Use the observed sample together with the ten bootstrap samples to find the bootstrap
estimate of the maximum, X, = X(5).

Solution
First we compute the point estimate from the observed sample: X,.x = 7-2. Next, we

compute the point estimates from the ten bootstrap estimates. These are just the max-
imums from each of the samples (see table below).

Sample Max of the Bootstrap Samples

7.20 7.00 7.00 7.20 7.20 7.20 7.20 7.20 7.00 7.20

The standard error via bootstrap is given by the equation below:

10
~ 1 ~(b ~ 2
SE(Xmax)boot = \/1_0 Z (Xgngx - Xmax)
b=1

- \/1—10[(7.20 —7.20)* + (7.00 — 7.20)* + -+ + (7.20 — 7.20)°]
—0.7733

In practice, B = 10 bootstrap samples might not be sufficient. On the other hand, a
sample of size 12 would have a total of about 1.3 million bootstrap sub-samples which
makes using all possible bootstrap samples computationally infeasible. Usually,
between B = 30 to B = 100 suffice for practical applications.

The Jackknife

Given an observed sample x = {x,xy, ..., X,, }, the delete-1 jackknife replicate is a sub-
sample of the observed data with one data point deleted. For example,
X(_ 1) = {Xg, ., x, } i one of these jackknife replicates and x( _ ) = {x}, Xy, X4, .., X} IS
another one. There are a total of n jackknife replicates:

X(_j) = {Xl, o X1 X 41 ...,Xn}, fori=1,...,n

Suppose that g. g™ R is a function that computes a statistic § = g(x) = g(xj, ..., x,) to
estimate an an unknown parameter . The corresponding function g:R11*1_> R com-
putes an estimate 6(_; by applying g to a jackknife replicate x(_j);

9(71) = E(X( 71)) = §<X1> XX 1 ""Xn)'

Suppose that g(-) computes the sample mean, then 6:%(x1+...,xn). The corre-
sponding function g(-) computes the sample mean on the n — 1 points from a jack-
knife replicate: §(_ ) = ’g’(X(, 1)) = ﬁ(xQ + ...,x,). The jackknife estimate of @ is the

sample mean of all the jackknife estimates:
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I

Example 1.5.2
Given the observed data {3,7,1,0,4} from Xy, ..., X; iid copies of X, estimate ¢ = E[X’]
with the jackknife method.

Solution
Setx = {3,7,1,0,4} . The sample moment via this sample gives an estimate of 6:

0 :%(32+72+12+02+42) =15
The five jackknife replicates and their corresponding estimates are

412407 +4 13.2

I
C
—r
=~
—
=
i
H_/
| |

2

3 4+124+0%+4 5.2

2

P47 +17+4 15

(7 %) =
=403’ )=
(3°+ 7% +0° +4%) = 14.8
(37 )=
=23+ 7+ 1%+ 0°) =

w

~

=
R,—/w—/ﬁ—/w—/

||
..J;|)—l = s | = ..blr—\ NG

Finally, the jackknife estimate is given by

6(,):%(6(,1)4-...-1-6(,5))

= %(13.2+5.2 +14.8+15+11.8) =12

The benefit of the jackknife re-sampling method is that we are able to obtain an esti-
mate of the uncertainty of the jackknife estimate, something we aren't able to do with-
out more knowledge of the distribution from which the data was sampled. We measure
the uncertainty associated with the jackknife estimate, 6(C0t) using the jackknife stand-
ard error given by

SBT3 6 -

Example 1.5.3
Use the formula above for the jackknife standard error to compute the standard error
of the jackknife estimate found in example 1.5.2.

47
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Solution R R
HereAwe have n = 5, 9(_1) =13.2, 9(_2> =5.2, 9(_3) = 14.8, 9(_4) =15, 9(_5) =11.8,
and 9( )= 12:

SE(8) e = \/g{(m 2-12)% 4+ (11.8 — 12)7]

we give SE(6);,q = 7.187

Summary

In this unit we introduced different methods for estimating parameters: method of
moments, method of maximum likelihood, ordinary least squares (OLS), and re-
sampling methods. The method of moments method relates the moments of a dis-
tribution with the parameter of interest and then uses the sample moments to find
an estimator. Recall that the 't moment of a random variable X is p(k) = [E[Xk] and
when we have a sequence of copies, Xy, ..., X, the sample moment estimator is
) = 12?: 1X%‘. The corresponding estimate with observed data xi, ..., X, Is

) = %Z?: 1xK. Suppose that we want to estimate an unknown parameter 9
using the method of moments. We find a function f which relates the moments (&)
to 9, § = £(u), 2, ..., ™)) and then the estimator is given by

Ez fE’rﬁ(l) @ | wm). Finally, the estimate based on observed data is given by
=1

PEEY)

T

)

One important property of any point estimator is whether or not it is unbiased:

E[6] = 6. We showed that some method of moment estimates are unbiased while
others aren't. For example, the sample mean estimator X is an unbiased estimator
for the mean () of a Gaussian distribution. But, the method of moments estimator
for the variance 2 of a Gaussian distribution is not unbiased when the the mean is
unknown.

A statistic is a random variable and is a function of a random sample Xy, ..., X,. In
our context, a statistic is an estimator for an unknown parameter. If this statistic
encompasses all the information that the random sample has to offer for estimat-
ing the unknown parameter, it is called a sufficient statistic. We looked at the defi-
nition of a sufficient statistic based on the joint distribution of the sample condi-
tioned on the statistic being free of the parameter. A more practical way of
determining sufficiency was through the likelihood factorization criterion.

The method of maximum likelihood uses the distribution family of a random sam-
ple to derive a point estimator as the maximizer of the likelihood function. When
the data are independent, the likelihood function is the product of the densities (or
PMS) of the random variables in the sample. This is often the case in practice. The
log-likelihood is the function that is used because it provides algebraic and com-
putational efficiency. Finally, the negative log-likelihood is used when using numer-
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ical (computer) algorithms to find the MLE estimates. As for the method of
moments, some MLE estimators are unbiased while others aren't. One of the nice
properties of MLE estimators (in contrast to method of moment estimators) is that
they are always sufficient statistics or functions of all sufficient statistics. In other
words, when we get an MLE, we know we have summarized all the information the
random sample has to offer with regards to the unknown parameter of interest.

In contrast with maximum likelihood, the ordinary least squares (OLS) method of
estimating parameters doesn't require knowledge about the underlying distribution
that produced the random sample. The only requirement for OLS is the functional/
model dependence within the random sample. The OLS estimates of the parame-
ters of interest is obtained by minimizing the sum of squared-residuals.

In the last section, we discussed two re-sampling methods: the bootstrap and the
jackknife. Both of these methods introduce a way of computing uncertainty of a
point estimate when the sample size is not sufficient to use the large-sample
theory using the central limit theorem or when the distribution of the underlying
(population) is unknown.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!



Uncertainties

STUDY GOALS

On completion of this unit, you will have learned...

how to classify types of uncertainty as statistical or systematic.
. the two common measures of uncertainty: variance and standard deviation.
how to compute the variance of linear functions of random variables.

how to approximate the variance of nonlinear functions of random variables.
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2. Uncertainties

Introduction

A table top is to be manufactured with target dimensions 300 cm long by 100 cm wide.
The carpenter will glue together five boards of various lengths each of which are X
wide with E[X] = 20 cm and v[X] = 0. 5cm? After the table top cures, they will cut the
two ends of the table top so that the final length is Y with E[Y] =300 cm and
V[Y] = 1 ecm? Suppose that we are interested in modeling the area of a table. We can
assume that each plank has length X;, Xy, ..., X5 iid with E[X;] = 20 and V[X;] = 0.5 for
i=1,..,5 and length Y, independent of X;. (Recall that iid stands for “independently
and identically distributed”) Thus, the area Z = (X; + Xy + -+ X5)Y. The expected
area is [E[Z] = 30, 000cm?2 What about the variance? The uncertainties (variances) of the
Xi's and of Y will certainly have something to contribute to the uncertainty in the area.
In this unit, we will learn how to quantify uncertainties and how they propagate
through functions of random variables.

Additionally, we learn how to quantify uncertainties associated with individual quanti-
ties using variance and standard deviation. In the first section, we will learn to identify
uncertainties as statistical or systematic. We will discuss examples of each and also
how to report them. In particular, we will highlight the difference between a systematic
mistake and a systematic uncertainty.

In section 2.2, we will evaluate the properties of variance and use these properties to
learn uncertainty propagation formulas in some simple cases (i.e, linear functions of
random variables). We will see that when the underlying variables are independent, the
propagation of errors of the random variables to the linear functions is quite straight-
forward. However, in practice, the underlying random variables we work with may not
be independent, they may be correlated. We will revisit the definition of covariance,
which measures how two random variables are dependent, and use this quantity
together with the individual uncertainties in the variables to propagate the uncertain-
ties to a linear function. In the case that the quantity of interest is a nonlinear function
of random variables, simple formulas are no longer possible. Furthermore, even if we
opt for complicated formulas, we won't be able to use them in practice using only the
variance and covariance quantities of the underlying random variables. Therefore, we
will learn how to approximate the uncertainties associated with functions of random
variables.

In statistical inference, we will use statistics collected from a finite sample to inform us
about claims made about the data. The formulas we use to compute these statistics
are functions of random variables. We need to understand how much uncertainty is
associated with the statistics we compute without having to repeat the experiment
many times. The results in this unit will inform such uncertainties of the statistics.
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2.1 Statistical and Systematic Uncertainties

Statistical inference involves data, which come about various methods such as count-

ing unique website visitors, weighing a piece of jewelry, or measuring the length of a

specimen using a steel ruler. When repeated measurements are taken, in an ideal

world, we expect the same result. In practice, however, this isn't the case. When meas-

urements are repeated, we often get different results. If a specimen is stored properly

and a researcher measures the length using a steel ruler in the year 2008, and the

same specimen is measured by the same researcher using the same ruler in 2010, they

may get different results due to the expansion of the ruler due to changes in tempera-

ture. If the temperatures weren't recorded when the original measurements took place,

there would be no way to correct the measurement error. This is an example where the

measurement has systematic uncertainty. For example, if there is expansion in the Systematic uncer-

ruler, then the new measurements taken would be systematically shorter than their tainty

true length. If we can correct errors due to this effect, we would have no systematic These are uncertain-

uncertainty, in practice it is very difficult to detect systematic uncertainties. ties in measurement
estimates that are

There are, however, instances where the errors are due to systematic mistakes rather not statistical.

than systematic uncertainty. Suppose we have a measurement device that was calibra-

ted at a specific temperature because it is known that changes in temperature will

affect the measurement of a specimen. Also assume that there is no way to re-calibrate

this device. If we use this device in an environment where the temperature is drastically

different, and either don't know of this effect or just ignore the effect, then the meas-

urements we obtain will be systematically different (e.g, higher) than the true values.

This is an example of a systematic mistake. On the other hand, if we are aware of the

effect and adjust the measurements (e.g, by subtracting some fixed or proportional

quantity) based on the effect predicted by the laws of nature, then we would have cor-

rected the systematic mistake and there would be no systematic uncertainty (or mis-

take). Yet another possibility is that we are aware of the effect but aren't certain of the

temperature at which the device was originally calibrated. Since we have no way of cali-

brating, we can't correct for the systematic differences in the measurements we obtain.

In this third scenario, we would have a systematic uncertainty associated with the

measurements.

Now suppose that we are measuring the weight of a piece of jewelry, say a gold ring.
We place it on our digital scale, correctly calibrated (so as to avoid systematic uncer-
tainty), but with three repeated measurements we get 14.25, 14.23, 14.28 grams
respectively. We can quantify the uncertainty by the sample standard variance:

o 1
S

n—1 9
> (xi—%)” = 0.000633333
i=1

The uncertainty is about 0.0006 squared-grams. The sample standard deviation is an
equivalent measure, but in the same units as the measurements (data)
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Statistical uncer-
tainty

This type of uncer-
tainty is associated
with the underlying
randomness in the
measurement proc-
ess or the quantity
being measured. It
can be reduce by
collecting more data.

n—1.
=

n
s = 52 =\/ L5 (5 — %) = 00251661
=1

Thus, the uncertainty is about 0.0252 grams. It is common to write
X +s=14.2533 4 0.0252. Unlike systematic errors, statistical errors can be reduced by
collecting more data (measuring the ring more times). If a Gaussian (normal distribu-
tion) can be used, the uncertainty (standard deviation) is reduced proportionally to
1/4/n. The different values we got for the weight of this ring are due to the inherent
randomness associated with the ring or the scale. Perhaps small particles that have
some weight are on top of the scale or attached to the ring. Uncertainties due to inher-
ent randomness in the data itself is called statistical uncertainty.

If the digital scale was not properly calibrated, then the experiment of repeatedly
measuring the ring would be subject to both systematic and statistical uncertainties. In
this case, we could summarize our estimate as follows:

estimate (statistical uncertainty) + =+ (systematic uncertainty)

In general, systematic uncertainties can be reduced by acquiring more knowledge and
incorporating this knowledge in the measurement process. Statistical uncertainties can
be reduced by acquiring more data.

Statistical uncertainties are defined by the variance (and standard deviation). Let X be
a random variable, its variance and standard deviation are defined by

VIX): = E[(X — E[X))’] = E[X?] - EIX]?

In the next section, we will discuss uncertainties of random variables that are based on
two or more other random variables. If the latter random variables have some depend-
ence we need to take this dependence into account. The standard way of measuring
dependence of two random variables is by their covariance. Let X; and X, be two ran-
dom variables, whose covariance is defined by

Cov(Xy, Xo): = E[(X; — E[X4])(Xq — E[Xy])] = Cov(Xy, X;)

2.2 Propagation of Uncertainties

Suppose that a random variable Y represents the quantity we want to measure but
can't. Instead, we can measure X and know how X and Y are related. So if we have a
value of X, then we can calculate the corresponding value for Y. Since they are associ-
ated with X, there will be uncertainties associated with Y. In this section, we want to
understand how these uncertainties are propagated from X to Y.
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Suppose long railing is manufactured in two parts and is to be joined on-site. Let X;
and X, denoted the lengths of the two parts. Y = Xy + X5 will be the total length of
the railing after installation. We would like to estimate the uncertainty of Y during the
manufacturing process. As such, we will take measurements of the two parts, compute
the uncertainties associated with them, and then figure out how these uncertainties
propagate to Y, the total length.

Linear Functions

Let's start with some basic notation. Let X be a random variable. We will denote the
variance and standard deviation of X by 6% = V[X] and ox = v/V[X] respectively. Adding
a non-random (constant) quantity to a random variable doesn't change its variance:
V[X + ¢] = V[X].

For two random variables X; and Xy, their covariance is denoted by 05 = Cov(X;, X).

Note that o9 = 09 = Cov(Xy, X;). Recall the following formulas from probability
theory for the variance of the sum/difference of two random variables X; and X

V[X;y & Xo] = 0} + 03 4+ 2019

If the covariance is zero, which happens when the variables are independent, then the
formula reduces to

V[X; + Xo] = 67 4 03

Now recall the formula for the variance of a non-random multiple (a) of a random vari-
able X:

The covariance is linear in both of its arguments; in other words, for random variables
X1 and Xy and scalars a and b, we have

COV(&Xl, bXQ) = abCOV<X1,X2) = ab012
If we combine the results of the equations above, we get the following formula for a
variance of a linear combination of two random variables Xy and Xy, where a; and aq

are non-random scalars:

Vla; Xy + agXo] = afot + ajod + ajagoy

Once again, if the covariance is zero, o019 = 0, then the formula above reduces to

Unit 2
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Vla; Xy + agXo] = afot + ado3.

Example 2.2.1
Given random variables Xy and Xy with 67 = 2, 65 = 3, and 015 = — 1, compute the fol-
lowing variances:

1. VX + Xy
2. V[10X,]
3. V[2X; — 3Xy]

Solution

1. Using a formula from above, we get V[X; + Xy = 0} + 034+ 019 =2+3—-1=4
2. Using a formula from above, we get V[10X,] = 10%6% = 100 - 2 = 200
3. Using a formula from above, we get

V[2X; — 3X,] = V[2X; + (—3)Xy] = 2%07 + (—3)203 + (2)(—3)o15=4-2+ 9 -3 + (—6)
(—1) =29

Example 2.2.2

Let Xy, ...,X, be independent random variables. Find the variance of the sample mean,
< 1 n

X==>4-1%

Solution
As before, let's set o; = V[Xj] for i =1,...,n. First, we can use the formula for the var-
iance of a non-random multiple from above with a =1/n

n 2 n
X = G
i i=1

i=1

V[X] = V =Ly
n

1
>
i=1

Now recall that since the variables are independent, we have COV(Xi,X]-) =0 fori=j.
Therefore, to find the variance of the sum, we can just extend the formula from the var-
iance formula for the sum of two random variables

VX =5y vix) =45

i=1 i=1

Example 2.2.3
Let Xy, ..., X, be iid with v[X] = ¢2 I.e, they all have the same variance. What is the var-
iance of the sample mean, V[X]?

Solution
We can use the result of the previous example with ¢? = 62 fori=1,...,n to get
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2
VX = 5 o= 4 ino2 =2

n
n° /= n

Recall that the sample mean X is an unbiased estimator of the population mean
u(l) = . When viewed as an estimator, the standard deviation of X is called the stand-
ard error of the sample mean. Using the result from equation variance of the sample
mean estimator, we have

The standard error of an estimator is the standard way of reporting the uncertainty
associated with it. When the population standard deviation (o) is unknown, we can
replace 42 with 2, the sample variance

n’

m®%@®:%

Nonlinear Functions

So far, we have worked with random variables Xy, ..., X,,, for which the uncertainties are
known and computed the uncertainties of linear functions of these, i.e, Y = X; 4+ X,,
Y = 10X, Y = 2X; — 3X,, Y = X. Often, the quantity we are interested in may not be a
linear function, i.e., Y = (X, Xy), where f is nonlinear. Computing the uncertainties of
Y in such cases is extremely difficult. Instead, we use formulas that aim to approximate
V[Y]. To illustrate this difficulty, we will compute the variance of a product of two inde-
pendent random variables and note the usual approximation formula used.

Example 2.2.4
Let X; and X, be independent random variables with variances o7 and o3, respectively.
What is the variance of Y = X;Xy?

Solution
From the definition of variance, we have

VIY] [(X1X2)2} — E[X,X,]’

=Lk
N2 2 2

= [E[Xl][[XQ] — E[X4] E[Xy]

where the second equality comes from E[X;X,] = E[X;]E[X,], which holds since the

variables are independent. Let's denote p; = E[X;] and po = E[X5]. Now we have

E[XY = VX)) +pd=of+uf and E[X3| = V[X,]+p3 =03 +pd Substituting these

results we have
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Coefficient of varia-
tion

A quantity used to
measure relative
uncertainty, this is
the squared ratio of
the standard devia-
tion with respect to
the random variable.

VY] = (07 + pi)(03 + 13) — ping
=0

99, 292, 929
105 + o1py + ogpg

The formula for approximating the uncertainty of Y = XXy, where X; and X, are inde-
pendent is given by

VIY] = VX X| & p07 + pio3 .

Example 2.2.5

Let X; and X5 be independent with py =2, up =3, 01 = 0.2, and 09 = 0.4. Compute the
variance of Y = XX, using the exact formula and the approximate formula. Compare
both using the relative approximation error.

Solution
We will start by computing the exact variance from the result of example 2.2.4:

oy = V[Y] = (0.2)%(0.4)" + (0.2%)(3%) + (0.4)*(2)” = 1.0064

Using the approximating formula, which approximates the variance of a product of
independent random variables, we get

0% ~ (0.2%)(3%) + (0.4)*(2)" =1

The error is [1.0064 — 1| = 0.0064, and the relative error is 0.0064/1.0064 ~ 0.636 %,
which is quite small.

The general formula for approximating the variance of a product to two random varia-
bles Y = X X5 is

0% = V[Y] ~ 3ot + pfod + 201

In practice, the interpretation of the variance of a quantity alone is not sufficient. We
want to see how it compares to the measured value. As such, instead of just examining
the variance of a random variable Y using 0%(, we want to examine the coefficient of
variation associated with the random variable. This quantity is the ratio (oY/Y)2. As
such, the following formulas for various nonlinear functions of X; and Xy, are given in
terms of the coefficient of determination:

Y = X.X (0 )2 o1\ 09 )? 2012
=R ¥ Rl TR TR

X ov\2 o1\ 2
vy, (Y)%(l +(02)_ o12
X, Y X, TIX, XX,
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Of course, in practice the nonlinear functions we encounter are more diverse than just
products or quotients. As such, we need a general method of propagating uncertainties.
The formulas we have introduced so far use a linearization of the function given by the
Taylor series. Recall that for Y = f(X), the first-order (linear) Taylor approximation cen-
tered at a is given by Y ~ f(a) + f’(a)(X — a). For our task, we will choose a = p = E[X]
so that Y = f(X) ~ f(p) + f'(u)(X — p). Next, using the formula for the variance of a
non-random multiple of a random variable, we get

0% = VY] ~ (F'()*0%

Example 2.2.6
Let X be a random variable with mean p = E[X] and variance o2 = 0%. Use the result of
linearization to approximate the variance of Y = logX.

Solution )
. . . 1 , 1

The derivative is f (X) =5 sof (M) = Therefore, 0% = V[Y] ~ %

Now, we consider a function of two (random) variables, Y = (X, Xy). The first-order

(linear) Taylor approximation of f centered at the mean (pq, po) = (E[X;], E[Xy]), is given

by

of of
Y = f(le X2) ~ f(Hla H2) + ia_Xl(Mp HQ) (X1 - H1) + [8_)(2(“1’ Mz) (XQ - MQ)

For the sake of brevity, we will use the shorthand
oo . 0L
X1 — aXI M, B2
and
of
0x,: = a_Xz(lLla MQ)
With this notation, we have
Y = f(XL Xz) ~ f(ub M2) + axl(X1 - M1) + axz(Xz - Mz)
Using the formula for the sum of two random variables, we have

0% = V[Y] ~ [axl]%% + [8X2]20% + 2[3)(1 8X2]012

Unit 2
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Example 2.2.7
Let X;, Xy, and Y = (X4, Xy) = X;X,. Use the formula from above to approximate the
variance of Y.

Solution
We start by computing the partial derivatives at the mean (ju, pio)

Ox, = mg and Ox, =y
Now, applying the formula, we get

0% = V[Y] ~ pdot + pio3 + 2uipe01o = pind|— +

5
WEowg o Habe

2 2
o o o
1 9 12‘

Example 2.2.8 <

Let Xy, Xy, and Y = {[ X, X, | = X—l Additionally, suppose that py = E[Xy] > 0. Use the
formula that gives the approximate variance of a function of two random variables to
approximate the variance of Y.

Solution
We start by computing the partial derivatives at the mean (ju, jio)

1
a -
X1
and
b
Ox, = —
2 W3
Now, applying the formula, we get
2 21 .2 2
1 al M1 HT|0T =~ 03 012
GY:V[Y]%—26%+—40%—2—30'12=—2—2 — T2 —
5 12 Ha (AT T A S L

General Formulas

Let Xy, ...,X,, be random variables with known variances and covariances. We denote
the random vector X = (Xy,...,X,,). The uncertainties can be summarized by the var-
iance-covariance matrix given by
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2
01 012 013 *** O1n

\/[X] —Vx = 0?1 0% 093 =+ O9p

Onl On2 On3 ** Op

The diagonal elements of this matrix contain the variances of each of the random vari-
ables and the off-diagonal elements contain the relevant covariances oy; = Cov(Xi,Xj).
Let Y be a linear function (transformation) of the X's: Y = a;X; + --apX,,. Then, define a
(row-)matrix A by

A =[a - ay
and get Y = AX. The uncertainties of Y can be computed with the formula

0% = V[Y] = AVxAT.
Example 2.2.9
Suppose Y = 2X, + 3X, with X = (X, X5), having the variance-covariance matrix

[3 2]
24
Use the formula above to co pute W[!}.

Solution
First, we note the matrix that gives Y:

A =2 3]
Next, using the formula, we get
2012 12
VY] = 2 3][3 H ]: 2 3][ ]:72
2 4|3 16

Sometimes, we have more than one measurement for which we need to find uncertain-
ties. For example, if we have Y = (Yy, ..., Y,,) and m measurements, each of which are
linear functions of the Xj's, say

Yy = a1 X; +apXy+ - +aX,
Yo = a9 Xy + agXy + - + a9, X,

Yo = a1 Xy +agXo + -+ ag, X,

then, we can define the matrix A by

Unit 2
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a11 a12 vt Ay

gl a9y v Agy
A= )

aml Am2 7 Amn

and write the relation as Y = AX. The uncertainties contained in Y can then be sum-
marize by its own variance covariance matrix:yv[Y] = Vy = AVxA™. Although the for-
mula looks the same as before, the result is not a number but a matrix with m rows
and m columns.

Example 2.2.10
Let Y, =X, +2Xy and Yy =2X; + Xy, with X = (X;,X5) having the variance-cova-
riance matrix

. _{104]
X714 9

Use the matrix to compute Vy = V[Y] for Y = (Y, Y5).

Solution
As before, we define the matrix A

1

Next, we apply the formula

VY= E ﬂ [140 :‘ E ﬂ - E ﬂ E i66] - E 246]

In the example above, the formula produced all the uncertainties we might want to
know about Y. For instance, V[Y;] = 2, V[Y5] = 26, and Cov(Y{,Ys) = 4.

Linearization of Nonlinear Functions

In the most general case, each of the random variables in Y = (Y, ..., Y,,) are (possi-
bly) nonlinear functions in X = (Xy,...,X,,). In this case, we would use the linear (first-
order) Taylor approximations centered at the means p = (g, ..., u,) of the function in Y
to obtain the matrix

011 012 943 - Oy
021 099 093+ Ogy

aml 8m2 am?; aInn
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Y; .
where 9;;: = O_Xl fori=1,...m and j=1,...,n. Then, we can approximate the var-

iance-covariancé 'Matrix Vy with

Vy ~ BVxBT
Example 2.2.11 920 —10
Let Y = (XX, X;/Xy). Given that VX_L 010 L and p = (1,2) for X = (X, Xy),
use the approximation from the formula ab _v% to]ap roximate Vy.
Solution
First, we compute the elements in B: 01y =pg =2, 019 =p; =1, 091 =1/pe=1/2, and
099 = — 1/4. Next, we use the approximation formula
1 25 35
2 1 20_1022 2 1 307 507
Vy~|1 1 =11 =
2 g0 00 e gl S 228
4 2 2 8
Summary

In this unit, we defined and discussed two primary types of uncertainties: statistical
and systematic. We learned that systematic uncertainties arise from uncorrected
errors when obtaining measurements and cannot by reduced by collecting more
data. Statistical uncertainties arise from the inherent randomness associated with
the measured quantity and can be reduced by collecting more data (making more
measurements).

Uncertainties are quantified using variance (or standard deviation) and relation-

ships between two variables, quantified by their covariance, also plays a part. If X
is a random variable, then its variance and standard deviation are defined by

VIX] = E[(X - E[X])’] = E[X?] - EIX]*. SD[X] = V[X]

For two random variables X; and X, the covariance Cov(Xy,Xs) is defined by
Cov(Xy, Xo) = E[(Xy — E[X4])(Xy — E[Xy])]

Uncertainty propagation is of crucial importance in studying uncertainties. We are often
interested in a transformed (aggregate) quantity based on measurable quantities. We
can measure the uncertainties associated with the measured quantities but not the
uncertainty of the quantity of interest.
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In section 4.2, we discussed some formulas that compute how uncertainties in the
quantities of interest (transformed quantities) are based on the uncertainties of the
underlying measured quantities. In the case where the quantity of interest was a linear
transformation of the underling quantities, we gave exact formulas for the uncertainty
of the quantity of interest. In the case where the transformation was nonlinear, we gave
a similar formula that approximates the uncertainty of the quantity of interest. Let
X1, ..., X, be n random variables. We summarize their uncertainties and dependencies
via the variance-covariance matrix Vx, where X = (Xy,...,X,). This matrix is n x n
whose diagonal elements are the variances of the random variables and off diagonal
entries contain the covariance of the respective pair (row/column number) of the ran-
dom variables. For any m x n matrix A, the variance-covariance matrix of Y = AX,
which summarizes the uncertainties and dependencies of the quantities of interest in
the random vector Y = (Yy,..., Y,,), is given by

Vy = AVxAT

This is the formula for a linear transformation. If Y = f(X) where f.gr® _y g™ is a (pos-
sibly) nonlinear function, then we define the matrix B which is the Jacobian matrix
(containing  the  partial  derivatives) evaluated at the mean vector
p = E[X] = (E[X];, ..., E[X],). The uncertainties in Y can be approximated with the
equation

Vy ~ BVxBT

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!
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Bayesian Inference and Non-Parametric
Techniques

STUDY GOALS

On completion of this unit, you will have learned...

. about prior distributions, posterior distributions, and conjugate priors and use these to
find the Bayes estimate of a parameter of interest.

. how to distinguish between object, weakly informative, and informative priors.

. Jeffrey's rule for determining weakly informative, transformation invariant, and priors
distributions.

. how to use Parzen windows to approximate the density of a distribution using observed
data.

. the k-nearest neighbors in both classification and density estimation contexts.
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3. Bayesian Inference and Non-Parametric

Techniques

Introduction

Suppose we have a (possibly biased) coin that lands on heads with probability =, which
is unknown. The frequentist's approach to estimating 1 is to collect data, toss the coin
a fixed number of times, and compute the proportion of times the coin lands on heads.
This is the frequentist (maximum likelihood) estimate of =. In contrast, Bayesian statis-
tics treats mas a random variable and, based on prior experience or knowledge, assigns
a probability distribution to the values of w. Next, observations are recorded (coin
tosses). The prior distribution, together with the observations, inform the Bayesian esti-
mate of .

The two overarching objectives of this unit are (i) to give a basic introduction to Baye-
sian statistics and (ii) to discuss some common non-parametric techniques. In fre-
quentist statistics, we assume that a parameter of interest (e.g., the mean of a Gaussian
distribution) is unknown by deterministic (not random). In Bayesian statistics, we
assume that a parameter parameter of interest is a random variable. In summary, sup-
pose that we want to estimate the mean, p, from a Gaussian distribution, N (p, o),
where o is known (say o = 1). In frequentist statistics, we assume that  is unknown but
deterministic. In the Bayesian approach, we treat p as a random variable. Next, based
on previous knowledge or domain expertise, we choose a distribution of p that doesn't
depend on the current observed data. This distribution is called the prior distribution.
We will discuss this in more detail in sections 31 and 3.2.

The choice of the prior is prone to controversy. We can either be objective, in which
case we just agree with the MLE estimate, or be subjective, in which case we incorpo-
rate some information about the parameter of interest based on experience. For exam-
ple, if we want to be completely objective about «, then we can say that it can take on
any value between 0 and 1 with equal probability. If we want to be subjective, and
almost all coins we have seen in our experience have been unbiased, we can use a dis-
tribution of ~ that has a sharp peak at 0.5. In section 3.2, we will learn about different
types of priors and demonstrate one important (semi)-objective prior known as Jef-
frey's prior.

Whenever faced with determining a parameter of interest from a predetermined family
of distributions (Gaussian, Bernoulli, etc.), we use methods such as method of
moments, maximum likelihood, and Bayesian methods, to estimate this unknown
parameter. We may have some observed data, but we cannot assume that it came from
any specific family of distributions (e.g. it can't be assumed Gaussian). Perhaps the his-
togram reveals a distribution whose shape is not in a standard family of distributions.
We cannot assume a family, and using parametric methods to analyze this data doesn't
make sense. In such situations, we try to approximate the density of the distribution
directly from the data. When we aren't making any assumptions about the density and
instead directly trying to estimate a density, we are in the realm of non-parametric
techniques. To this end, in section 3.3, we discuss Parzen Windows. This is a method for
estimating the density (PDF) of the distribution from which the observed data may
have been drawn from without making any assumptions about the distribution family.
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Another common density estimation technique is called k-nearest neighbors (kR-NN).
The default application of this technique is to classify unobserved data points to one
class or another by asking its k nearest data points from the observed data to vote
based on their own class. In section 3.4, we illustrate the k-NN approach to classifica-
tion and show how this method can be adjusted to estimate the density of an
observed sample.

3.1 Bayesian Parameter Estimation

Bayes law is at the heart of Bayesian statistics. Let's take a moment and restate this
formula as it lays the foundation of Bayesian parameter estimation. Let A and B recall
that the conditional probability P(A|B) read “the probability of event A given that B
has occured,” is defined by

P(BNA)

P(BJA) = F(A)

In words, the conditional probability is the joint probability divided by the probability
of the conditional event. We can rewrite this formula as

P(ANB)=P(B|A)-P(A)
In words, the joint probability is the product of the conditional probability times the
marginal probability (of the conditioned event). We are now ready to state Bayes' for-

mula:

P(BIA) - P(A)

P(A|B) = F(B)

Next, if we use A€ to denote the event that is complementary to A, we have
B=(BNA)U(BnAS) furthermore, (BN A)n (BN A®) = ¢. Therefore,

P(B) =P(BNA)+PBNA")

Finally, using the relationship between joint probabilities and conditional probabilities,
we have the total law of probability.

P(B) = P(B|A)P(A) + P(B|A°)P(A")

Now Bayes' formula can be written in its usual form:

P(A|B) = P(B[A) - P(A)
P(BJA)P(A) + P(B|A°)P(A°)
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Prior distribution
This distribution is
the target parameter
of interest set before
observing any data.
It encodes our belief
about the parameter
of interest.

In fact, if we have a sequence of events Ay, Ay, ... A which are pairwise disjoint
(AjnAj= 0 for i # j) and whose union contains all the possible outcomes, then we
can write Bayes' formula in its most general form (Downey, 2016):

P(B|A;) - P(A))
B|A;)P(A;) + P(B|Ag)P(Ay) + - + P(B| A )P(Ay)

[P(Ai‘B> = [P(

We are now ready to talk about Bayesian parametric estimation. Suppose that there are
two urns, each of which contain balls that are identical except for their color. The pos-
sible colors are blue, orange, and green. These urns are in a machine that returns a ball
from one of the urns when activated. In other words, it chooses one of the urns at ran-
dom, and then chooses a ball from that chosen urn at random. The first urn contains
three blue, five orange, and two green balls. The second urn contains three blue, five
orange, and ten green balls. We don't know how the machine chooses the urns. Per-
haps it chooses the first urn with 50 percent probability and the second urn with 50
percent probability. Or perhaps it chooses the first urn with 30 percent probability and
the second urn with 70 percent probability. In fact, if we can figure out the probability
with which it chooses the first urn, we can easily deduce the probability it chooses the
second urn. Let § denote the probability that the machine chooses the first urn. Then,
1 —0 is the probability it chooses the second urn. Before we observe anything this
machine produces, we can say that the 0 is a random variable that is equally likely to
be any number from the set {0.2,0.5,0.7}. In other words,
P(6=0.2) =P(0 =0.5) =P(0 =0.7) = 1/3. In Bayesian statistics, this distribution is
called a prior distribution. We run the machine once and observe a green ball. Using
this observation (data), we want to update our distribution about 6. We do this using
Bayes' formula. The following expression computes the probability that § = 0.2:

P(6=0.2|G)

B P(G]0 = 0.2)P(6 = 0.2)
=~ P(G[0=02P(8=02) 1 P(G|0=05)PO=05) +P(G8=07P(8 =07

Next, to compute the probability P(G|6 =0.2) considers two cases: (i) that the ball
came from the first urn and (ii) that the ball came from the second urn.

P(G[0 = 0.2) = % 024 % L0.8 ~ 0.4844
Similarly,
P(G[6 = 0.5) = % 0.5+ % L0.5 ~ 0.3778

P(G|0=0.7) = % 0.7+ % -0.3 ~ 0.3067
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In each of these computations, the probability quantity occurring in the denominator

of Bayes' formula is called the evidence. Plugging these values into Bayes formula, we Evidence

have The (unconditional)
probability of

B B 0.4844-1/3 N observing the data is
PO0=021G) = 55 1/3 703778 1/3 7 03067 1.3 ~ O-4144 the evidence.
Similarly, we can compute the following:
PO = 0.5{(}; ~ 0.3232
P(6=0.7|G) ~ 0.2624

Now we have a new distribution for 6, this new distribution, which takes into account
the prior distribution and the new observation, is called the posterior distribution. If
we stop here, the Bayes estimate of 6 can be computed either by considering the mode,
the value of 6 with the highest posterior probability, g(Bavesmode) _ (y o or the mean,

p(Baves,mean) _ 5 4144 + 0.5 0.3232 + 0.7 - 0.2624 = 0.4282

Either way, we see that if we only consider this one observation, it is more likely that
the machine chooses the second urn with higher probability. Let's continue with this
idea but make a couple of adjustments. As a prior distribution, we assume that 0 is
equally likely to be any value between 0 and 1, that is 6~U(0, 1). Furthermore, assume
that each of the urns contains an infinite number of balls of either blue or green. The
first urn contains blue and green with proportions 0.4 and 0.6 respectively. The second
urn contains blue and green with proportions 0.7 and 0.3. Next, let's run the machine
ten times to get ten balls. We observed four blue and six green balls. We would like to
estimate the probability 6 that this machine chooses the first urn. Let's collect our
observations into an event D = {B, B, B, B, G, G, G, G, G, G}, where B indicates a blue
ball and G indicates a green ball.

Let's calculate P(D|6 = t) using Bayes formula. For each ball, it either came from the
first urn or the second urn independently. Therefore,

PD|0=1t) = (0.4t +0.7(1 — t)* (0.6t +0.3(1 —t))°

This quantity is called the likelihood. The numerator of the Bayes' formula is the likeli-
hood times the prior distribution. Since the prior is uniform on (0, 1), its probability
density function is constant of 1. Since 6 is assumed to be a continuous random varia-
ble, the evidence is the integral of this quantity.
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1
evidence = f likelihood x prior
0

1
:f P(D|0=t) - 1dt
0

1 4 6
_ fo (0.4t +0.7(1 — £))(0.6t + 0.3(1 — t))° - 1dt

~ 0.000737597

Finally, Bayes' formula computes the posterior distribution,

posty(t) = P(6 =t|D)

likelihood x prior
evidence

(0.4t + 0.7(1 — ) (0.6t + 0.3(1 — 1))°
0.000737597

Note

Your focus here should be on the formulas and concepts, and not necessarily how
to compute the integral in the evidence as you are not responsible for tedious com-
putations involving integrals.

Let's summarize the main ideas we just discussed. For any parametric inference, we
need an observed data set, D, and the distribution from which this data is drawn
f(-]0) based on one or more unknown parameters of interest, 6. Our goal is to esti-
mate 6. The frequentist approach treats § as an unknown but deterministic (non-ran-
dom) quantity and uses the maximum likelihood method. In Bayesian inference, we
treat 6 as a random variable and encode our prior belief by specifying a distribution
called the prior: 0~prior(0). Next, using Bayes' formula, we derive the posterior distribu-
tion, post(#) as (Hogg et al, 2019)

£(D10) - prior(0)
P(D)

post(0) =

If 0 is discrete, then

P(D) = Z ¢(D|6)prior(h)

0

If it is continuous, then

P(D) = wa(ﬂ|6)prior(6)d6

oo
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Finally, the Bayes (mean) estimate is Ep,[0]. For discrete 6, we have

6Bayes - [Epost[e] - Z epOSt(e)
0
and for continuous 6 we have

—~ S
eBayes = [Epost[e] = f fpost(6)do

— o0

Computationally, the most difficult part of this process is to compute the evidence. In
practice, we don't need to compute this directly. The evidence is just a normalizing con-
stant to make sure that the posterior is a valid distribution. As such, in our computa-
tions, we just want to find the form of the posterior distribution and therefore we can
ignore the evidence term and only consider quantities that involve the parameter of
interest. Equality is replaced by proportionality, so we have

post o< €(D]0) - prior(0)
posterior o likelihood - prior

Once we have the form of the posterior, we can choose the constant that makes the
posterior a valid PMF (PDF). We will need to use the Beta distribution in the next exam-
ple. Recall that if X~Beta(ca, ) then its PDF is given by

MX(& 11 _« B—1 <
0, otherwise

Q

The mean of the Beta distribution is given by T

Example 3.1.1

Our goal in this example is to find an estimate for the probability of heads, 6, of a (pos-
sibly biased) coin. We toss a coin five times and observe {H, H, T, H, T}. Assume a
prior distribution on 6 to be 8~Beta(2,2). Find the posterior distribution and the Bayes
(mean) estimate, §Baye8.

Solution

We start by writing down the likelihood. We can encode the observed data as X = 1 for
heads and X = 0 for tails. As such, X~Bernoulli(6) and its PMF is fy(x) = 6%(1 — 9)1*",
for x = 0, 1 and zero otherwise. Therefore, our data is D = {xy,...,x5} = {1,1,0,1,0}
and the likelihood is given by
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¢(216) f(x;10)

0 (1—0)1-x

= -

i=1
= OZiXi(l —0)1— Xix;
—0%(1 —0)2

Next, we know that 6~Beta(2, 2), therefore the prior distribution is given by

ior(0) {e(1-e),0geg1
I10r X
P 0, otherwise
The posterior is given by

post(8) oc 0°(1 — )% 6(1 — 6) = 6*(1 — 6)3

Notice that the posterior takes the form of a Beta distribution. We can infer the param-
eters via pattern machine g5~ 1(1 — 9)4—1 to see that the posterior distribution of 0 is
Beta(5, 4). Explore the figure below for the likelihood, the prior, and the posterior dis-
tributions. Now, using this posterior, we can write the Bayes' mean estimate as

Q

eBayes ~a B ~ 0.5556

Nl K3t
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Graphs of the Likelihood, Prior, and Posterior Distributions from Example 3.1.1
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Density

1.0 1
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0.0 1
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— Posterior: Beta(5,4)
———— Prior: Beta(2,2)
—— Likelihood

For the example above, the frequentist approach would have been to estimate 6 via the
MLE, which is eMLEQ: % = 0.6. The prior estimate is the mean of the prior distribution
which is 0o, = 575 = 1 — 0.5 Notice that the Bayes estimate is between these two

estimates. In fact, it is their weighted average:

~

1 5~
5 = 90MLE + §Oprior
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This is not a coincidence. Working out example 311 in a more general setting, say our
observed dataset is

D= (1, .1, 0,...,0 ]
h times (n—h) times

and the prior on 6 is Beta(a, 3). The likelihood is

€(D]0) = 0"(1 — g)n—H

and the prior is
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0 t1—0)"" o<o<1

prior(0) o {
0, otherwise

Therefore, as expected, the posterior follows Beta(h—|— a,n —h + ). The Bayes (mean)
estimate |s eBayeS % The MLE estimate is Oyqp = L "and the prior estimate is
Opnor m Finally, we can write the Bayes estimate as a Welghted sum of the MLE
and prior estimates:

~ _ n h a+f o \3 N
eBayes_m'E+n+a+B'u+B_>\9MLE+<1_>\)eprior
N 1—X

For o, B, n > 0, we have 0 < \,1— X < 1. Therefore, indeed the Bayes estimate is
between the MLE and prior estimates. This illuminates and important characteristic. If n
is large (we have a lot of data), then X\ is close to 1 and 1 — X is close to zero, so the
Bayes estimate is close to the MLE. On the other hand, if we don't have much data (n is
small relative to o + B), then \is small, and 1 — X is close to 1, and the Bayes estimate
is close to the prior. The figure below shows the MLE and prior estimates together with
the Bayes (mean) estimate for various sample sizes. The computed value from example
311 1is shown as well.

Bayes Estimate versus Sample Size in Relation to MLE Estimate and Prior Mean

0.6
i 519
0.5 .
5 50 100 150 200
Sample size

-~ Bayes estimate
——— MLE estimate
——— Prior estimate

One the other hand, for a fixed sample size, the parameters of the prior also affect the
Bayes estimate. The figure below shows the Bayes estimate versus o + 3 with a = B for
a fixed sample of size n = 5 and sum of observed values > x; = 3, as in example 3.1.
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Bayes Estimate for a Fixed Sample Size versus Parameters of the Prior in
Relation to MLE Estimate and Prior Mean

4 20 40 60 80 100

a+,3

——— Bayes estimate
———— MLE estimate
——— Prior estimate

This decomposition of the Bayes estimate is not unique to the Bernoulli-Beta combina-
tion. Suppose D = {xy,...,x,} is observed from a Gaussian distribution N (p,o) with
unknown . and known ¢. Based on our beliefs, we set th errlorfpr n~N (g, 1). The pos-
terior distribution of 4 is also Gaussian with, E F E(Q—MOQ 2(1 +02/n)e) There-
fore, the Bayes estimate is 7; HBay = X0 [The ML e%ﬁr‘hate for p is the sample
mean, pvLg = X and the prior mean & Borior = Ho. As before, we can write the Bayes
estimate as a weighted sum of the MLE and the prior estimates:

= 2
- 0X + oo n_ _ o2 ~ .
HBayes = 0t o2 = nt ol X+ nt o2 Mo = NbMLE + (1_>\>Mprior
X 1—X

The figure below shows the relationship between the Bayes estimate of p versus the
sample size in relation to the MLE estimate and the prior mean for a Gaussian model.
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Maximum a posteri-
ori estimate

This is the value of
the target parameter
at which the poste-
rior distribution ach-
ieves its global maxi-
mum; essentially the
mode of the poste-
rior distribution.

Bayes Mean Estimate versus Sample Size for a Gaussian Model

in Relation to MLE and Prior Mean
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-~ Bayes estimate
——— MLE estimate
—— Prior estimate

So far, our Bayes estimate has been the posterior mean. In practice, some researchers
also use another estimate: maximum a posteriori estimate (MAP). The MAP estimate is
the maximizer of the posterior distribution:

Oyap = arg max post(6)

The maximizer of Beta(0|a,B) is #@1_2 for o, B > 1. The posterior distribution in
example 311 was Beta(b, 4). Therefore, the MAP estimate for that example is
Oyiap = % ~ 0.5714. If the posterior is Gaussian, the Bayes mean estimate is the same
as the MAP estimate. This is because a Gaussian distribution attains its maximum at its
mean.

Bayesian parameter estimation treats an unknown parameter of interest as a random
variable. We first set a prior distribution for our parameter of interest. Next, we use
Bayes' formula to find the posterior distribution using this prior and observed data.
Finally, we use the posterior distribution to compute a Bayes estimate for the parame-
ter of interest. The two common Bayes estimates are the posterior mean, which is the
expected value of the posterior distribution and the maximizer (mode) of the posterior
distribution.
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3.2 Prior Probability Functions

The prior distribution of a parameter of interest encodes the beliefs of said parameter.
In section 31, we used a Beta prior for the parameter = of the Bernoulli distribution.
The resulting posterior distribution of = also turned out to be Beta (although with dif-
ferent parameters). Therefore, the prior of Beta is called a conjugate prior. Conjugate
priors are desirable because they allow us to investigate the posterior analytically, with
formulas. Before the popularization of computing, having a conjugate prior was the
only way to investigate posteriors. Today, we no longer have this restriction and are free
to choose any prior distribution that we think appropriate to encode our beliefs of the
parameter of interest. The table below shows some of conjugate priors for certain like-

lihoods.

Conjugate Priors for Some Discrete and Continuous Likelihoods

Likelihood Target parameter
Bernoulli () = (probability)
Binomial(n, ) = (probability)

Poisson(\) X (rate)
Geometric(r) = (probability)
N(p,0) pn (mean)
Exponential(\) X (rate)
Gamma(a, B) B (rate)

In general, we can classify priors into three categories:

1. Objective priors
2. Weakly informative priors
3. Subjective (highly informative) priors

Conjugate prior

Beta

Beta

Gamma

Beta

Gaussian

Gamma

Gamma
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Conjugate prior

In general, when a
prior distribution
results in a posterior
distribution of the
same functional
form with different
parameters, it is
called a conjugate
prior.
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Objective priors only enforce domain restrictions on the target parameter. Consider a
likelihood following Bernoulli(w). An objective prior is given by prior(w)~2(0,1), the
uniform distribution on the interval [0, 1]. This prior forces the parameter to lie between
0 and 1; which is required for a probability parameter such as «. A weakly informative
prior is given by prior|w| = Beta|w|1/2,1/2 x ————. This prior forces w to live
. m(l—m .
between 0 and 1 exclusively and slightly favors extreme values (near 0 or 1) and is oth-
erwise almost uniform. An example of a subjective prior might be
prior(r) = Beta(r|10,10) oc 7%(1 _ﬁ)9. This distribution highly favors values near 1/2.
The figure below shows graphs of these three prior distributions.

Graphs of Different Types of Priors for a Probability Parameter

——— Objective uniform(0,1)

~———— Weakly Informative Beta(1/2,1/2)
————— Subjective Beta(10,10)

———— Subjective Beta(12,4)

The choice of priors greatly impacts the estimates obtained from Bayesian methods. As
such, choosing an appropriate prior is very important. Choosing a bad prior might ren-
der the estimates obtained useless. Generally, there are two schools of thought regard-
ing the choice of priors: subjective Bayesians and objective Bayesians. Subjective Baye-
sians subscribe to the opinion that the prior should encode all available information
(e.g., prior experience). Objective Bayesians argue that scientific thought must be as
objective as possible, and injecting information into the model other than the given
data violates this objectivity. As a concrete example, the prior Beta(10,10) strongly
favors values near 0.5 and is used to express the belief that the probability parameter
is near that value. In the real world, this might mean that the researcher has almost
always encountered unbiased coins and wants to use this knowledge in their model.
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The figure below shows a graph of the Bayes (mean) estimate versus sample sizes for
the weakly-informative prior (Beta(1/2,1/2)), a subjective prior (Beta(10,10)), and their
relative relation to one another and to the MLE and and Prior mean.

Bayes Estimates versus Sample Sizes Using a Weakly-Informative

Prior and a Subjective Prior

0.6 -
9 5/91
0.5 .
5 50 100 150 200
Sample size

-~ Bayes estimate Prior: Beta(10,10)
-~ Bayes estimate Prior: Beta(1/2,1/2)
———— MLE estimate

——— Prior estimate

The question remains, however, how does one choose an objective prior? Intuitively, it
seems that the most objective choice would be to choose a constant prior. For exam-
ple, in the case of a probability parameter, the uniform distribution on [0, 1]; basically,
prior o ¢, a constant. Now consider that we want to estimate the mean . of a Gaussian
N(p, o) with known ¢. We want to choose a prior on p that is objective. Following the
same reasoning, we choose post(()p) o ¢. However, [ = oo, and so this is not a valid
density. Such priors are called improper priors. It may be the case that even if the prior
is improper, the posterior is still a valid density.

Given observed data 2 = {x,...,x,} from N (p,o) with known ¢ and unknown p. The
likelihood,

1
2
2[ %)

Choosing a uniform prior on p, prior(p) = 1, the posterior is

€(D16) o exp|— (x—n)’
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1
(%)

Therefore, post(ze) = N|p|X,-=]. In other words, the posterior is Gaussian with mean x
and variance ¢?/n; a valid d/gnsity! The Bayes (mean) estimate is PBayes = X, Which is
the same as the MLE estimate. Using a uniform (objective) prior resulted in the Bayes
estimate agreeing with the frequentist estimate. This shouldn't surprise us. The only
source of information with a uniform prior is the data.

_ 2
post (j1) o< exp|— 5(X—p)

Everything worked out fine with the uniform prior for the mean in the Gaussian model.
But things might go wrong. Let's return to the Bernoulli(w) with unknown =. If we use a
uniform prior on &wgrget post(w) = Beta(w| Y. x; + 1,n + 1) and the Bayes (rﬁean) esti-
mate is = *i___, not too different from the MLE estimate, ~ _ =% of the
‘Bay MLE n
frequentist a

es — 1
pproalh’

0

A closely related quantity associated with a probability = are the odds: T This com-
pares the probability of success relative to the probability of failure. The log-odds is the
natural logarithm of this quantify: log(lf—ﬂ). Note that the transformation ¢ = loglfTY
is one-to-one. If we want to be objective about &, then we should also be objective
about the log-odds parameter ¢. However, using a flat prior, prior(w) = 1, makes results

in a density for ¢ that is not flat:

e¢

prior(¢) = m

This is a contradiction! If we assume that we have no information about the parameter
of interest and choose a flat prior, then any transformation of that parameter must also
have a flat prior. Otherwise, the transformation erroneously encodes some information.
Said another way, if we choose a prior for a parameter that has some degree of objec-
tivity, then we would like any transformed parameter to have the same degree of objec-
tivity, i.e.,, the same distribution. This property is called transformation invariance. Har-
old Jeffrey came up with a rule that produces weakly informative (almost objective)
priors that are transformation invariant. This rule is based on the Fisher information, a
way to quantify the information a random variable provides about a parameter of inter-
est. Formally, the Fisher information of a parameter, 0, is denoted by I(6) and is defined
by

I(0) = —E[¢€”(X]6)]6]

where the derivatives are with respect to the parameter § and the expectation is with
respect to the distribution of the data. Jeffrey's prior is defined by priorJ(e) =/]1(0)].

Example 3.2.1
Let X~Bernoulli(w) with unknown =. Use the log-likelihood function
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te(X|n) =X log 7+ (1—X)log(l—m)
to find Jeffrey's prior.

Solution

We start by computing the first and second derivatives with respect to «. First, recall
that the derivative of the (natural) logarithm is the reciprocal function. In other words,
ilogu _% Using these facts, the derivative of Xlogr is i(Xlogw) = § Also, if the
argument of the logarlthm is |tself a function of the mdependent varlable then its
derivative is log}({g =& <“) Using this fact, we have
%(( — X)log(1 —n)) (— 1) gUsmg these results, we have the derivative of the
log-likelihood

e’ (X|n) =

X 1-X
™

1—m

Next, recall that the derivative of a power function uses the power rule. If n # 1, then
%u =nu® ~ L Therefore, we have 3-(7) = — —5. Next, if the factor in a power function
is itself a function of the independent vanab[‘e thzn Wje need to use the chain rule:

a ( )nfl_ng(u>n*1 d& Therefore, L 1—X): -1 .(11_—) With these results,

‘Ejﬁle second derivative of the log-likelihood function i

B X 1-X
" (X|n) = ST Sa—
™ (1-m)
The Fisher information is
I(x) = —[E—%— 1_X27t
™ (1-m)
R 1—m=
1 1
7;+1—Ti
. 1
T w(1—m)

Finally, using Jeffrey's rule, Jeffrey's prior is given by

prior;(w) = /|I( \/7

In this section, we have discussed how the choice of the prior plays an important role
in the Bayes estimate of a parameter of interest. In particular, we have seen that priors
can be uninformative (contain no prior information about the parameter of interest),
weakly informative (contain some information), or informative. Furthermore, we
learned about Jeffrey's rule in determining an appropriate weakly informative prior dis-
tribution that has the desirable property of being transformation invariant. That is, the
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information imputed by the Jeffrey's prior is the same as the information imputed by
corresponding distribution of the transformed parameter. Finally, we also discussed
conjugate priors. These are prior distributions that allow the posterior to belong to the
same family. Such distributions are only chosen because the resulting mathematics is
easy. Today, with the popularity of software packages, we are no longer bound by purely
analytical results and can choose any prior that imputes the information about the
parameter we want.

3.3 Parzen Windows

Parzen windows, also called Parzen-Rosenblatt windows, is a method for estimating the
PDF of a distribution from a finite sample. It is a very flexible method since it requires
no knowledge of the distribution nor any knowledge of its parameters. One of the sim-
plest visual tools we can use to estimate the shape of a distribution from a finite sam-
ple is to look at a histogram. Since this method is a generalization for creating histo-
grams, we will start our discussion here.

Given an observed sample {xy,...,x,}, we would like to organize our data into “bins” of
a fixed size. One way to do this is to choose the bin width, h, as well as the smallest
value that the first bin contains. Consider the observed sample {1,1,2,2.5,3,4,7.4}.
Suppose we choose a bin size of h = 2. The first bin should be chosen to include the
smallest value of 1, so we set [0,2) as the first bin. The next bin will be [2,4), the next
bin will be [4,6), and the final bin will be [6,8). We will stop here because the last bin
contains the largest value in our sample. Next, we count the number of data points that
fall in the respective bins. From these count values, we can compute the proportion of
the total or the observed probability by dividing each count by the sample size; in this
case the sample size is 7. Finally, to get a density, we divide the probability by the bin
size. The table below shows these values for our observed sample.

Computing a Density Histogram

Bin Coun Probability Density
[0,2) 2 1/7 2/14
[2,4) 3 3/7 3/14
[4,6) 1 1/7 1/14

[6,8) 1 1/7 1/14
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The Parzen window method can be thought of as a way to construct a "smooth” histo-
gram. The figure below shows the histogram we computed together with a density esti-
mate using the Parzen window (kernel density estimate).

Density Histogram and Kernel Density Estimate

414 +

2/14 ~
Density /

i [
\/\

0 2 4 6 8

——— Kernel Density Estimate
—— Histogram

The Parzen window method approximates the density of the distribution using a finite
sample {xj,...,x,} by the formula

X —Xj

f(x) = %iK( h )

i

where K(-) is a non-negative function called the kernel and h > 0 is a number called
the bandwidth or window-size. In practice, the kernel function K is chosen to be a valid
PDF. A common choice is the standard Gaussian PDF, K = ¢ where
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Example 3.31
Give the kernel density estimate of the sample data {1,1,2,2.5,3,4,7.4} using the
Gaussian kernel with window size h = 1.

Solution
Following the equation above, we have

<H->2

1 7
f7_§::

1 _x-1) N x-1 N x-2) N _(x—2.5) N (x=3) N
—7\/%6 2 € 2 € 2 € 2 (§] 2
(x— ) (x—7.4)°
e 2  +te 2

The “Density Histogram and Kernel Density Estimate” figure contains the graph of this
function. Using this method, we get an approximate density function from the sample
data. Furthermore, if the kernel used is a valid PDF, then this density function is a valid
PDF, i.e., it is normalized: fR?(x)dx: 1. Once we have this approximate PDF, we can
compute everything we would compute with any other PDF. For instance we can com-
pute probabilities such/a\smz ffoo?(x)dx. We could also compute moments,
for example, the mean E[X] = [pxf(x)dx

The window size (bandwidth), h, affects the variability of the estimated density func-
tion. When h is small, the ¥ has more variability. When h is large, the T is smoother and
has less variability. Explore the figure below, which estimates the density function using
a Gaussian kernel function for different window sizes.
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Gaussian Kernel Density Estimate with Various Window Sizes

The Gaussian kernel is only one option in kernel density estimation. Although it is quite
popular, there are other commonly used kernels. Among them are the exponential, lin-
ear, and cosine kernels. Including the Gaussian, the four are summarized in the table
and figure below.

Four Kernels
Name Function

Gaussian 1 X2

Ee 2,— 0 <x< ©

Exponential e 5x>0
Linear 1-x[, -1<x<1
Cosine %COS(WQ—X), —1<x<1
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Typically, the choice of the kernel as well as the window size to use for a particular
problem depends on the data set. The figures below show our kernel density estimates
using the four common kernel functions.

Graphs of the Four Common Kernels

0.4 1.00+
0.31 0.75
0.2 0.50
0.1 0.25
0.0 : ; : _ 0.00-L . ; . :
- -2 0 2 4 0 1 2 3 4
Gaussian Exponential
1.00- 0.8
0.75+ 0.6
0.50 0.4+
0.25 0.2
0.00{ —— | : 0.0{ — . .
=] 0 1 =] 0 1

Linear Cosine
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Kernel Density Estimates Using Four Common Kernels
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As our first introduction to non-parametric techniques, we have discussed Parzen win-
dows. This techniques allows us to estimate the probability density function using only
the data. The quality of the resulting approximate probability density is highly depend-
ent on the choice of kernel (linear, exponential, Guassian, etc.) as well as on the choice
of the window size.

3.4 K-Nearest-Neighbors

K-nearest neighbors (k-NN) has two main applications. In this section, we will discuss
both. As a preview, the first application is in classification. The k-NN approach to clas-
sify a new unclassified data point is to find the k closest data points from the seen
(classified) data (the neighbors) and then choose the class that is the most popular.
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The second application of k-NN is as a tool to approximate the probability density
directly from the data. As such, it is a non-parametric technique very much like the Par-
zen windows from section 3.3.

The problem we will discuss first is how to classify a new (unseen) data point, x, as one

of two classes, ¢; or cg, based on other data points whose classes we already know. The
table below shows ten data points and their respective classes.

Data Points and Classes
Point —1.7 -0.7 -0.6 0.0 0.3 0.4 0.8 1.9 2.1 2.3
Class 1 1 2 1 2 2 2 1 2 1

The figure below shows a plot of this data. Points from different classes have different
colors.

Data Points and Their Classes

=15 =10 =05 0.0 0.5 1.0 15 2.0 25

Suppose we are given a new data point: x = — 1.1. Should we classify it as class 1 or
class 2? One way to do this is to look at its “closest neighbor,” i.e., the point in the data
set that is closest to it. If we calculate the distance from x = — 1.1 to every point in
the data set, the one with the smallest distance (the point closest to x = —1.1) is
—1.7 and belongs to class 1. Therefore, based on this 1 closest neighbor, we classify
our point as class 1. Now consider a different point, x = 1, the closest neighbor to this
point is 0.3, and this point belongs to class 2; thus, we would assign the new point
x = 1 to class 2. Similarly, we would assign x = 0.14 to class 2; its closest neighbor, 0,
belongs to class 2. What we have just described is the method of classification using 1-
NN, one-nearest-neighbor. The figure below shows three plots, each of which contain
our data set along with the three “test” points we wanted to classify. The circled data
point is the one closest to the test point.
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An Example of a Two-Class Classification with 1-NN with Scalar Data Points

° X @e o oo @ ® o o
® oo e oo ® x e o o
° oo @x oo ® e o o

=156 =10 =0.5 0.0 0.5 1.0 15 2.0 2.5

Instead of using only one closest neighbor, let's now use the three closest neighbors, 3-
NN. The three closest points for x= —1.1 are { — .7, — 0.6, — 1.7} and all these
points belong to class 1, so if we take these 3 neighbors into account they all “vote” for
class 1, and we would classify our test point to this class. Next, let's consider the sec-
ond test point, x = 1, the three closest points (neighbors) are {0.4,0.3,0.8}. The first
two would “vote” for their class, class 2, and the last point for class 1. If we consider a
majority vote, then this data point x = 1 would be classified as class 2. The figure below
shows three plots, each of which contains our data set along with the three “test”
points we wanted to classify. The three circled data points in each graph are the closest
to the test point.

An Example of a Two-Class Classification with 3-NN with Scalar Data Points

® X (0.0] . oo 0 e o o
5 e . (0,0] @® x e o ®
. (] ® x @@ . e ® @

=1.50 =10 =05 0.0 0.5 1.0 15 2.0 2.5

In an extreme case, we can look at the 10-NN classifier, the one that uses all the data
points. Since 6 out of the 10 points belong to class 2, the 10-NN classifier would always
assign every new test point to class 2. We consider the other extreme case of the 1-NN
classifier. These two extremes are not very good in applications. Using too many neigh-
bors starts using information for data points that may be too far, diminishing the idea
of localized information. On the other hand, using too few neighbors is also not ideal
since it uses only a very small part of the neighborhood of the data points. In practice,
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there are some standard ways of choosing the ideal number of neighbors, the k in k-
NN. We will discuss one way of doing this: cross-validation. Before discussing cross-val-
idation, let's consider a two-dimensional data set, where each point is a pair of num-
bers, each pair belonging to one of two classes. The table below shows the data set we
will use.

Two Dimensional Data in Two Classes

Point Class
x;=(—-1.7,-1.2) 1
x9=(—0.7,—1.1) 1
x3=(—0.6, —1.0) 2
x4 = (0.0, —0.9) 1
x5=(0.3, —0.3) 2

xg=(0.4,2.0) 2
x7=(0.8,2.2) 2
xg=(1.9,2.3) 1
xg=(2.1,2.5) 2

x10=(2.3,2.5) 1
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Given a test point x = (—1,1), we compute the distances to all the data points by
di=|x—-x| for i=1,..,10 and then order from least to greatest:
d(1) < dgg) <+ < d(10). The 1-NN classifier would choose the class of x(1). The 3-NN
classifier would choose the majority of the class labels among {X(l),X(Q),X(S)}. For the
given test point, the three closest distance are d(;)=1.72 corresponding to
x(1)=x6 = (0.4,2), d)=1.84 corresponding to x(2) =x5=(0.3, —0.3), and
d3) = 2.04 corresponding to x(3) = x3 = ( —0.6, — 1.0). The three data points belong
to class 2. Therefore, the 3-NN (and 1-NN) would assign this data point to class 2. The
figure below shows three graphs each containing the data set, a test point, and the
three closest neighbors.

An Example of a Two-Class Classification with 3-NN

with Two-Dimensional Data Points

24 CREE G AR oo €2
1« - -
0' @ 7 @ s il -
=11, @ ° 4, @ © Al e
T 6 T i T 6 T i T |0 T é
k=3 k=3 k=3
Test Point: (-1, 1) Test Point: (1, 0) Test Point: (2, 2)

Now that we have seen some simple examples of k-NNs, let's introduce some notation
to formalize our discussion. The given data set will be denoted by
D ={(x1,y1)-- (xp,y4)} where x, e RY and y; € {1,...,C} for i =1,..n. In this setup,
each data point is a pair consisting of a point in d-dimensional space and an integer
denoting the class of that data point. In the most general setting; we consider C
classes. In the discussion above, we were working with a binary classification problem
where C =2, in which case y; € {1,2}. Given a test point x ¢ R4, the k-NN classifier
assigns the most probable (majority vote) class among the k closest neighbors of x. We
will denote the k closest neighbors of x by N(x). Next, we denote by N;(x) the data
points in N(x) which belong to class 1 and Ny(x), the data points which belong to class
2. Using this notation, the class assigned to x, y(x) is given by

y(x) = argmaxw _ argmax|NC(X>|
. c |N(X)| c k
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where |N.(x)| is the number of elements in the set N.(x). In other words, |N;(x)| gives
the number elements in the k closest data points that are assigned to class 1. This defi-
nition of y(x) is exactly the same thing we did for the numerical examples at the begin-
ning of this section. The class assigned to a data point x is the one that has the highest
proportion among the neighbors considered.

Another application of the ideas presented here can be used to approximate the den-
sity of the distribution from which a random sample is drawn. Given a random sample
X1, ..., X, Of size n, we define the k-NN radius, ri(x) of a point x to be the " largest
distance among the distances between x and each of the sample points. As before, let
d; = |x — x;|, be the distance between x; and x for i = 1,...,n. Order these distance in
non-decreasing order: d() < dg) < -+ < d,). With this notation, the k-NN radius is
rk(x) = d(y). The estimated density of x is given by

/fk<x) - 2nr11<{(x)

The motivation of this formula is that 2r(x) is the volume of the 1-dimensional ball
centered at x, with radius ri(x). This ball contains k out of the n sample points, thus
the presence of the factor k/n. The figure below shows the sample data along with the
distances to the pointx =0.5.

Sample Data and Distance to a Given Point: 0.5
Sample -1.7 -0.7 -0.6 0.0 0.3 0.4 0.8 1.9 2.1 2.3

Dis- 22 1.2 1.1 0.5 0.2 0.1 0.3 1.4 1.6 1.8
tances

If we order the distances; we have {0.1,0.2,0.3,0.5,1.1,1.2,1.4,1.6,1.8,2.2}. Now,
using k = 3, we have ri(x) = r3(0.5) = 0.3, the third largest distance. As such, the esti-
mate for the density is given by /f\k<x> = ?3(0.5> = 2-103W =0.5. Now let's see what
we get with a different value of k. With k=05 we have r50.5)=1.1, so
?5(0 . 5) = Wil ~ 0.227. In the figure below, we illustrate ry(x) for this sample data
with x = 0.5 and k = 3,5. The semi-transparent (pink) solid line shows the 1-dimen-
sional ball centered at x with radius ri(x). The radius is illustrated as the dashed line

connecting the point x to the | th farthest point. The circled data points fall in the ball.
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Illustrating the k-NN Radius fork=3 and k=5
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The figure below shows estimates of the density estimated using the k-NN approach
with various values of k together with the histogram of the data.

Density Estimates for a Small Sample Using KNN for Various Values of k

0.6 0.6 4
0.5 0.5
0.4 0.4 -
0.3 0.3 -
0.2 0.2 -
0.1 1 0.1
0.0 - 0.0 -
k=3 k=5

Finally, we will show how the R-NN estimates of the PDF work with larger samples. We
generate n = 1000 observations from a standard Gaussian distribution N(0,1) and
compute the k-NN estimate /f\k(x> for —3 <x <3 for k = 10,50, and 100. The figure
below shows the graphs of the true PDF, a histogram of the data, and the k-NN esti-
mate for these various k.
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KNN PDF Estimate for a Standard Gaussian Sample of 1000 Points

——— K-NN
— True PDF

For another demonstration, we generate n = 5000 observations from an exponential
distribution with rate X\ = 1/3, that is Exponential(1/3). The k-NN estimate ?k(x) are
computed for 0 < x < 10 for k = 50, 250, and 500. The figure below shows the graphs
of the true PDF, a histogram of the data, and the k-NN estimate for these various k.

KNN PDF Estimate for an Exponential Sample of 1000 Points

00 25 50 75100 0.0 25 50 7510.0 0.0 25 50 7.5 10.0
k=50 k = 250 k =500

— K-NN

——— True PDF

For both large sample estimates of the PDF using k-NN, notice that ?k is quite noisy for
small values of k and less so for larger k.
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One advantage of this approach to estimate a PDF is that it can be easily extended to
higher dimensional data. For example, if our data is two-dimensional, then by replacing
the factor 2r(x) by mr(x,y)? we get the estimate f,(x,y) for the joint PDF f(x,y). For
three dimensions, we can replace the factor 2ry(x) with ?ﬁrk(x,y,zfi) and use it to get
the estimate fy(x,y,z) of the joint PDF f(x,y,z).

In this section, we have discussed the concept of using k-nearest neighbors as a classi-
fication technique and as a density estimation technique. For the former, we have seen
how new unclassified data can be classified using information from the closest data
points whose classes we know. Adapting this idea to density estimation, we have seen
how to apply the idea of k-NN to estimate the density, point-wise, from observed data.
Just as with Parzen windows, the k-NN is a non-parametric technique. It doesn't try to
estimate parameters with some pre-determined family of distributions. Unlike Parzen
windows, the method enables a non-fixed window size, as this is determined by the
radius, r, from the data. In this sense, k-NN is a more flexible technique.

Summary

In section 3.1, upon review of relevant concepts from probability, we used Bayes'
formula to develop a Bayesian treatment of parameter estimation. The key con-
cepts in this section were the prior distribution, the likelihood, evidence, and the
posterior distribution. The key difference between frequentist statistics and Baye-
sian statistics is that in the latter the unknown parameter of interest is treated as a
random variable. Our beliefs about this parameter are encoded in a chosen prior
distribution. Given some observed data, we can update this distribution using the
the relation posterior = (likelihood x prior) /evidence to get a posterior distribution
of the parameter. From this distribution, we can use the mean or mode to obtain a
Bayes estimate of the target parameter.

The Bayes estimate is sensitive to the chosen prior distribution. In section 3.2, we
discussed some ways in which the prior distribution can be chosen. In particular,
we distinguished between uninformative, weakly informative, and informative pri-
ors. A key type of prior is that which comes from Jeffrey's rule. A rule that enables
us to find an uninformative or weakly informative prior which is invariant to a
(reversible) transformation of the parameter.

In section 3.3 and 3.4, we introduced two non-parametric techniques. Parametric
techniques require that a distribution family is assumed. Our goal is to approximate
the parameter (or parameters) which best fit the observed data. In contrast, non-
parametric techniques don't make any assumptions about the underlying distribu-
tion from which the data was generated. Instead, we seek to directly model the
probability density function purely based on the data. In section 3.3, we discussed
Parzen windows. Here, we have to choose the kernel and the window size. We dis-
cussed how different choices of the kernel and window size affects the character of
the resulting approximate PDF. In section 3.4, we briefly introduced k-nearest neigh-
bours first as a technique to address classification problems. The section ended
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with an adaptation of k-NN for approximating PDFs. Unlike Parzen windows, we
don't need to choose a kernel, and the technique of k-NN automatically chooses a
varying window size by computing the relevant “radius” quantity directly from the
data.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!
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STUDY GOALS

On completion of this unit, you will have learned...

. the general framework and how to interpret the result of hypothesis testing.
how to conduct and interpret some common non-parametric hypothesis tests.
how to conduct and interpret some common parametric one- and two-sample tests.
how to define and interpret p-values.
how to construct and interpret confidence intervals.

how to control two different measures of error related to multiple hypothesis testing.
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4. Statistical Testing

Introduction

Statistical testing lies at the core of statistical inference. Also called hypothesis testing,
statistical testing involves structured paradigms which use results from probability
theory to quantify the evidence, or lack of evidence, that an observed sample provides
towards a claim. A diverse set of claims can be addressed with statistical testing, as
such, it is used in almost every industry. Applications include marketing, finance, medi-
cine, and psychology. In this unit, we will discuss the most common statistical tests,
learn how to conduct them, interpret their results, and, most importantly, understand
their limitations and the assumptions under which these tests can be applied. The
tests we have chosen to include here are both popular and require only the fundamen-
tal mathematical knowledge expected in this course.

Suppose that the prevalence of breast cancer for females aged 54—65 is two percent
We are interested in the prevalence of breast cancer for females aged 54—65 whose
mothers were diagnosed with breast cancer. To this end, we sample 10,000 females who
fit this criteria. Out of this sample, 400 have developed breast cancer. Thus, the sample
prevalence of breast cancer is 400/10,000 = 0.04 = 4 %. We want to test whether the
true prevalence of breast cancer among females whose mothers had breast cancer is
different than the prevalence among all females aged 54—65. The statistical test that
enables us to examine such claims will be the subject of section 41. This section will
introduce the idea of hypothesis testing with regards to claims made about an
unknown parameter for a single population of interest.

Many of the hypothesis tests we discuss in this unit are parametric tests, statistics tests
about parameters of a distribution of the underlying population(s). In section 42, we
discuss some common parametric tests. Many statistical models assume that the
underlying population has a Gaussian distribution. To this end, we present the Kolmo-
gorov-Smirnov test of normality, a non-parametric test that determines how well the
sample data fit a pre-determined Gaussian distribution. Another goodness-of-fit test
uses the y2 distribution to assess how well count data (frequency distribution) fits a
proposed categorical distribution. Finally, another 2 test is discussed, which helps
evaluate whether two categorical variables are dependent.

At a high-level, sections 41 and 4.2 discuss hypothesis tests involving a claim about
data that is generated from a single population, “one-sample tests.” In section 4.3, we
introduce hypothesis tests which compare parameters from two populations. For exam-
ple, given two samples, one from each of two independent samples, we will learn how
to conduct a hypothesis test that compares the true means of the populations. As an
example from user interface (Ul) and user experience (UX), as applied to a business
setting, let's consider the example below.

The click-through rate (CTR) is defined as the proportion of users who click on a call-to-
action link on a Web page relative to the total number of users who viewed it. In an
effort to increase the CTR of a certain page, a Web designer decides to test a new
design for the call-to-action button. The current background color of the button is light
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blue. Let's call the current design A. The proposed design of the call-to-action button is
to make the background color light green. This proposed design will be denoted by B.
To avoid confounding the experiment with other variables, everything on the Web page,
besides the background of the call-to-action button, is kept the same. The page will
now serve one of A or B at random to each visitor. In other words, about 50 percent of
the visitors will see design A while others will see design B. After some time, the CTR
will be computed for all the visitors who experienced each of the designs; let's call
these proportions © and mg. These two will serve as estimates to the true proportion
of CTRs from the respective designs w4 and wg. We want to find out if the collected
data provides evidence statistically significant to support the claim that mp < wg. In
other words, should we expect that the new design will perform better with respect to
CTR? Section 4.3 will allow us to evaluate this scenario using A/B testing, a marketing
term meaning “two sample hypothesis testing” In general, this section will help us use
hypothesis testing with regards to claims made about how analogous unknown param-
eters of interest are related to one another.

In section 4.4, we continue our discussion of hypothesis testing. We discuss in detail
the trade-off between type | and type Il errors and define the power of a test, which is
a commonly overlooked but important consideration. In this section we also introduce
the idea of p-values, an important but commonly misinterpreted value. We learn how
to correctly compute and interpret p-values. Additionally, in this section, we learn
about interval estimation as superior alternative to point estimates. While a point esti-
mate gives us a single value as an estimate for an unknown parameter of interest, an
interval estimate is a range of values, taking into account the uncertainty associated
with the estimation process. We also discuss how confidence intervals may be used to
evaluate hypotheses exactly like the ones we address in units 41 and 4.2.

In the final section, section 4.5, we discuss multiple hypothesis testing. Suppose that
we want to grow tomatoes in a field and have four different soil hydration schedules.
We would like to know if the average yield over a period of time, measured in kilo-
grams, differs at a statistically significant level across the different hydration schedules.
In this scenario, we have many hypotheses. Let's label py, po, pg, by as the true average
yields from the four different hydration schedules. The status quo, the null hypothesis,
would state that all the means are the same: no effect. The null hypothesis contains
the statement Hy:py = pg, 11 = M3, 1 = g, Ho = [3, Ho = Wy, and p3 = py. The alternative
hypothesis, which looks for an effect, may be found by replacing = with = in any of
these statements. If we accept a five percent rate of error for rejecting one true null
hypothesis, then the probability of rejecting at least one true null hypothesis is much
higher, more than 20 percent! In this section, we will learn two methods to control
errors of this nature.

4.1 Hypothesis Tests and Test Statistics

Hypothesis testing is a four-part paradigm used to evaluate the statistical significance
of observed data with respect to a pair of competing hypotheses (claims). The first part
of this paradigm is to determine the hypotheses. The status quo, that is, the statement
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Type | error

This error occurs
from rejecting a true
null hypothesis.

Type Il Error

This error occurs
from failing to reject
a false null hypothe-
Sis.

of no effect or no change, is summarized as the null hypothesis and is denoted by Hy,.
The test hypothesis, the statement indicating the presence of an effect or a change, is
summarized as the alternative hypothesis and is denoted by H;. In the example from
the introduction about the prevalence of breast cancer, the null hypothesis states that
the prevalence of breast cancer for women aged 54—65 whose mothers had breast can-
cer is the same as all women aged 54—65 (2%). The alternative hypothesis states that
the prevalence is different. Let = denote the prevalence of breast cancer for our popu-
lation of interest. We can write the two hypotheses as

Hy:m=0.02; H;:w#0.02
In general, testing claims about a population proportion against a known value mg is
Hy:m =7, Hy:m# 1

In our case, vy = 0.02. Once a sample is obtained and the sample prevalence (propor-
tion) is computed, due to randomness, it is unlikely to get exactly 0.02, even if the true
prevalence in the population of interest is in fact 0.02. The sample prevalence may turn
out to be 0.03, 0.021, 0.04, theoretically any number between 0 and 1. Of course if the
true prevalence was in fact 0.02, it is more likely to observe a sample proportion near
0.02 than far from it. In fact, for a given sample size, the farther the sample prevalence
is from 0.02, the more statistically significant the evidence is against our assumption
that Hy:w = 0.02. In other words, for a given sample size, the difference between the
sample proportion and the assumed proportion, ® —w is an indicator of evidence
against Hy:m = (. The larger this difference, the more likely our assumption (the null
hypothesis) is false. But what is the cutoff value? This brings us to the second part of
the hypothesis testing paradigm: the significance level.

The significance level of a hypothesis test is the highest probability of incorrectly
rejecting the null hypothesis. That is, the highest risk we are willing to take if we decide
to reject the null hypothesis. Formally, the significance level « is the probability of
rejecting a true null hypothesis

a = P(reject Hy|Hy(is true))

The decision to reject a true null hypothesis is certainly an error. In statistical testing,
this error is called a type | error. The cutoff value for the difference between the sam-
ple proportion and the assumed proportion that results in a decision to reject the null
hypothesis comes from the significance level, a. This controls the probability of com-
mitting a type | error. Another error is also possible when conducting a hypothesis test:
failing to reject a false null hypothesis. This error is known as a type Il error, and its
associated probability is denoted by B. The table below summarizes these two types of
errors. The tricky part is that o and B are inversely related. If one is set to a low value,
the other tends to be high. We will discuss the trade-off between o and 3 in a later sec-
tion.
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Type | and Type Il Errors and (Probabilities)

True Hy False Hy

Reject Hy Type | error (o) No error

Fail to reject Hy No error Type Il error (B)

In practice, instead of working with the observed difference ® — w, and trying to come
up with a cutoff value, we work with a standardized quantity for which we know the
(approximate) distribution. This standardized value is called the test statistic. The cen-
tral limit theorem tells us that if the sample size is large, the quantity

% — 7T0

U=—F——

To(1— )
n

(given m =), approximately follows a standard Gaussian distribution (Hogg et al.,
2019), U|Hy~N(0,1). Here %:%Z?:lXi is the estimator of the sample proportion
where X; =1 if the ;th subject in our sample has breast cancer and zero otherwise.
Instead of coming up with a cutoff value for the difference ®™ — g, we come up with a
cutoff value of u such that rejecting Hy when Hy is true is o. In our case, when |U]| is
large, we will tend to reject Hy. Our cutoff value(s) corresponds to u, where

P(|U] > [u|[Hp) = «

Viewed a different way, P(U < u.|Hy) = o/2 or ®(u.) = o/2 where & is the CDF of the
Gaussian distribution. Once this cutoff value is determined, the rejection region is a set
of values u such that [u| > |u|. The first figure below shows the Gaussian distribution
together with the rejection region (in orange). The second figure below shows various
cutoff values and corresponding rejection regions for various values of o
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Test statistic

This random variable
standardizes the
quantity measuring
a departure from the
null hypothesis. Usu-
ally, such a random
variable is chosen so
that its distribution
is known, at least
approximately.

Rejection region
This set of values of
the test statistic is
associated with a
total probability
equal to the signifi-
cance level and indi-
cates departure from
the null hypothesis
in the direction(s) of
the alternative
hypothesis.
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Two-Sided Rejection Regions of a Gaussian Test Statistic
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Two-Sided Rejection Regions of a Gaussian Test Statistic

with Various Significance Levels

a = 0.20 a = 010

-1.282 1.282 -1.645 1.645

« = 0.05 a = 0.01

-1.960 1.960 -2.576 2.576

As you might expect, the smaller the significance level, o, the smaller the rejection
region. It is very important to note that the hypotheses as well as the significance level
(and thus the rejection region) are determined before any data ar collected. Otherwise,
the data may bias our choice of hypotheses as well as the significance level in order to
favor one decision over another. In other words, choosing the hypotheses and/or the
significance level after analyzing the observed data completely invalidates the integrity
of the statistical test. In practice, it is unjustifiable to acquire/analyze data before these
choices are made! Our choice of the hypotheses was already made; we will choose a
one percent level of significance, i.e., o = 0.01. The third part of statistical testing is to
acquire data and compute the observed values of the quantities of interest. Ultimately,
the observed value of the test statistic, ugp.

Suppose that in a sample of n = 10,000 women aged 54—65 whose mothers had breast
cancer, we find that 400 of them have breast cancer. The sample prevalence is
T =400/10,000 = 0.04. The observed value of the test statistic is

0.04—0.02
Yobs = "0 021 —0.02) 14.29

10000
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Two-sided test

In this statistical
test, the null hypoth-
esis indicates that
the true parameter
is different than
what is claimed,
yielding a rejection
region composed of
intervals extending
in opposite direc-
tions.

One-sided test

In this statistical
test, the alternative
hypothesis indicates
a directional differ-
ence (less than or
more than).

From the figure above, which shows various two-sided rejection regions, this observed
value is in the rejection region corresponding to o = 0.01. This brings us to the fourth
and final part: the decision. Since the observed value of the test statistic is in the rejec-
tion region, we reject the null hypothesis at the five percent level of significance. This
means that the data provides evidence at the five percent significance level that the
null hypothesis is false.

Let's summarize the four parts for this example:

1. Establish hypotheses: Hy:m = wg = 0.02 versus Hy:m # 1y = 0.02
2. Set o = 0.01 and the test statistic

%7’[‘0

U= SRRV (0, 1)

(1 —mo)
n
The rejection region is |u| > u. = 2.576

3. Compute the observed value of the test statistic from the sample data: u,,s = 14.29
4. The observed value, ugs falls in the rejection region and therefore we reject Hy at
the five percent level of significance.

The statistical test we performed on the breast cancer scenario was a two-sided test.
This is because the alternative hypothesis, © # w,, is equivalent to the statement
T < ® or ™ > T Viewed another way, the rejection region, |u| > |u.|, was composed of
the two regions u < |u.| and u > |u.|. Sometimes, the statistical test incorporates some
prior notion of the direction of the effect. In this case, a researcher may want to use a
one-sided test. There are two possible one-sided tests: a left-tailed test in which the
alternative hypothesis takes the form 6 < 6, and a right-tailed test in which H;:6 > 6.
As we mentioned before, the choice of the hypotheses must be made without acquiring
or analyzing the data. The rejection regions associated with a one-sided test is a single
interval of values extending in only one direction. The rejection region of a left-tailed
test extends to the left and that of a right-tailed test extends to the right. The figure
below shows the rejection regions of the three types of alternative hypotheses together
with the significance level and the cut-off value(s).

Example 411
Let Xy, ..., X, be independent with unknown mean p. and known standard deviation o. If
n is large, the central limit theorem assures us that test statistic defined by

approximately follows the standard Gaussian distribution, that is, J2RRIO%: /() 1). Using
o = 0.05, find the rejection region corresponding to each of the following alternative
hypotheses under the assumption that Hy:p = pyg is true.
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1. H11M>p,0
2. H12}L<}L0
3. Hitp#pg

Solution

Let z, denote the (1 —«a)100 quantile of the Gaussian distribution. In other words,
®(z,) = 1 —a or equivalently, z, = q)_l(l — u). First, the cutoff value u. must satisfy
P(U>u,) =a=0.05 50 u,=z ¢5=2 '(0.95)=1.645. The rejection region is
(1.645, oo ). The cutoff value u, must satisfy P(U < u.) = o= 0.05. By symmetry, we

have u, = —zy o5 = — 1.645. The rejection region is (— co, —1.645). This is a two-
tailed test. The cutoff values u, must satisfy P(|U| > |u.|) = o = 0.05. In other words,
P(U <t ) =a/2=0.025 50 uy = —2) g25= —® '(0.975) = —1.96. Analogously,

Uep, = 1-{76. The rejection region is therefore (— oo, —1.96) U (1.96, oo ).

The figure below shows the three rejection regions found in the previous example.

Rejection Regions for a Gaussian Test Statistic from Example 4.1

1,645 | 1.645 1960  1.960

Left-Tailed test Right-Tailed test Two-Tailed test
m= Area = 0.05 w= Area = 0.05 m= Area = 0.025 + 0.025

Example 4.1.2
Let Xy,...,X,, be independent with unknown mean p, and unknown standard deviation
o. The test statistic defined by

follows the student T distribution with n — 1 degrees of freedom (Hogg et al., 2019), that
is, U~T(n — 1), provided that either n is large enough to use the central limit theorem,
or the underlying distribution is approximately Gaussian. Here S2 is the sample var-
iance (the unbiased estimator of variance). Using o = 0.05 and a sample size of n = 10,
find the rejection region corresponding to each of the following alternative hypotheses
under the assumption that Hy:p = pyg is true.
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© Hpp >
« Hp:p <y
« Himp#pg

Solution

Let t, _ 1, denote the (1 —«)100 quantile of the T distribution with n — 1 degrees of
freedom. In other words, [P(T(n — 1) < tn,Lq) =1— . In this problem we have n = 10
so the distribution we will work with is T(9).

1. The cutoff value u, must satisfy P(U > u.) = a = 0.055s0 u, = tg o g5 = 1.833. The
rejection region is (1.833, oo ).

2. The cutoff value u, must satisfy P(U < u.) = o = 0.05. By symmetry, we have
U, = —tg .05 = — 1.833. The rejection region is (— oo, —1.833).

3. This is a two-tailed test. The cutoff values u, must satisfy P(|U| > |u.|) = o = 0.05.
In other words, IP(U < uCL) =a/2=0.02550 U = —t9 0 025 = — 2262 Analo-
gously, Ue, = 2262, The rejection region is therefore
(— 00, —2.262) U (2.262, oo ).

The figure below shows the rejection regions from example 4.1.2.

Rejection Regions for a T(9) Test Statistic from Example 4.1.2

-1.833 1.833 -2.262 2.262
Left-Tailed test Right-Tailed test Two-Tailed test
m= Area = 0.05 m= Area = 0.05 m= Area = 0.025 + 0.025

So far, we have seen three test statistics for conducting hypothesis tests. The first one
was used for a statistical test involving =, the true proportion of a population of inter-
est. The other two were used for statistical tests involving u, the true mean of a popula-
tion of interest. Examine the table below summarizing these three test statistics and
when it is appropriate to use them.

Common Test Statistics for Parameters of Interest

Parameter Test Statistic Assumptions
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Common Test Statistics for Parameters of Interest

 (true proportion) U~ "0 ~N(0,1) n p>10and
mp(1 —mp) ’ n (1—p)>10
n
p (true mean) U — 77M0~N(0 1) o is known, and either n

is sufficiently large for

o CLT, or the underlying
distribution is Gaussian.
X = o 3
p (true mean) U= SMO~T(n _) g2 is t.he sam.ple variance
i and either n is suffi-
n

ciently large for CLT, or
the underlying distribu-
tion is Gaussian.

Example 4.1.3

A factory is accused of improperly releasing industrial waste into water reservoirs used
by local farms. It is believed that the chemicals in this industrial waste causes birth
defects, including low birth-weight. An independent council is charged with assessing
the claim that average weight of newborn babies in this town is less than the national
average of 3480 grams. The significance level is set at o = 0.01. The birth weights of
twelve newborn babies are sampled at random from the only hospital in town. The
sample average of these weights is 3250 grams with a sample standard deviation of 250
grams. Use this data together with t; .01 = —2.718 to perform the appropriate stat-
istical test. Assume that the weights approximately follow a Gaussian distribution.

Solution

Let p denote the true average birth weight of babies in this town. Set py = 3480 as the
true average birth-weight of babies in the country to which we would like to compare.
The null hypothesis is Hy:p = pg = 3480. Since the council is charged with assessing
the claim that the true birth weight in this town is less than the population average, we
have a one-tailed (left-tailed) alternative hypothesis: Hy:p < pg = 3480. Since the
standard deviation of the birth weight in the country is not given, we will assume it is
unknown and instead use S = 250 grams, the sample standard deviation. From the
table above, the appropriate test statistic is

and its observed value is
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3250 — 3480
Ughs = T ~ -3.187

V12

The rejection region is u < u, = ty1 01 = -2.718. Since the observed value of the test
statistic falls in the rejection region, we reject the null hypothesis at a one percent
level of significance that the average birth weight of newborns in this town is the same
as the national average. In other words, the data provides evidence in favor of the
alternative hypothesis.

Statistical tests help us make objective conclusions about the statistical significance of
the data. However, it is not appropriate, solely based on these conclusions, to make
recommendations and/or take action (or not to take action) in a real-world problem. In
real-world applications, we must also consider the scientific and practical significance
of the observed data. From the previous example, a obstretician should probably be
consulted about whether the sample average is within the “normal” birth weight limits.
Additionally, using the sample standard deviation, the doctor may ask for an interval
estimate of the average rather than a point estimate and decide whether this interval
estimate is entirely within normal birth weight limits. These are just some considera-
tions that are beyond the scope of what a statistical test can ascertain.

So far we have discussed the following three statistical tests:

1. One-sample Gaussian test for testing claims about the true proportion « of a popu-
lation against a baseline.

2. One-sample Gaussian test for testing claims about the true mean p of a population
against a baseline when the standard deviation, o, of the population is known. This
test assumes that the distribution of the population is (approximately) Gaussian. If
this assumption is not valid, the sample size must be large enough for the central
limit theorem to provide guarantees of the normality of the distribution of the sam-
ple mean.

3. One-sample T-test for testing claims about the true mean of . of a population
against a baseline when the standard deviation is unknown and replaced with the
sample standard deviation. This test requires the same assumptions as the previous
test.

4.2 Some Common Non-Parametric Tests

The statistical tests discussed in the previous section are called parametric tests
because the hypotheses involve statements about parameters of distributions. In this
section, we will discuss some common non-parametric tests. These are tests in which
the hypothesis doesn't involve statements about population parameters.
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The Chi-Square Goodness-Of-Fit Test

Suppose that a company is interested in the distribution of employee absences over
work days: Monday to Friday. To this end, they want to test the hypothesis that the dis-
tribution of absences across the five working days varies against the null hypothesis
that the distribution is uniform. The null hypothesis states that the distribution is uni-
form

1
H():[P(AMOH) == [P(AFri) = 3

The alternative hypothesis, Hy, states that the distribution is different. We will set a
significance level of o = 0.05 and then collect some data. We collect data on expected
and observed absences. The table below shows a summary of this data.

Observed and Expected Absences on Different Days of the Week

Weekday
Number of  Monday Tuesday Wednes- Thursday Friday
absences day
140 158 152 150 200
(160) (160) (160) (160) (160)

Each of the five cells in this table contain the observed and expected counts. The total
number of observed absences is 140 + 158 + --- 4+ 200 = 800. Therefore, under the null
hypothesis the expected number of counts for Monday is % - 800 = Epjy,- The observed
number of absences on Monday is Oy = 140. In fact, the expected counts are all
equal under the null hypothesis: Eyjon = -~Epy. None of the observed counts match
the expected counts, however, this could still happen because of randomness even if
the null hypothesis were true. We want to know if departure of the observed counts
from the expected counts are statistically significant. To this end, we will use a standar-
dized quantity, a test statistic, that quantifies the overall departure of the observed
counts from the expected counts. This test statistic is defined by

(0;— E)’

E:
i€ {Mon,...,Fri} 1

U:

This quantity is, of course, random because it depends on the observed counts O;. The
distribution of U is x2(4): a chi-square distribution with v =5 — 1 = 4 degrees of free-
dom. The larger the difference between the observed and expected counts, the larger

www.iubh.de
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the observed value of this test statistic. Thus, large values of U provide evidence
against the null hypothesis. The 1—a=1-0.05=0.95 quantile of U-x?(4) is
u. = 9.488. If the observed value ug, is larger than this value, we will reject the null
hypothesis at o = 0.05 level of significance. Otherwise, we will fail to reject the null
hypothesis. The observed value is calculated by

(200 — 160)*
160

2
140 — 1
_(40-160°

Ughs = 160 ~ 13.55

Thus, ugps > ue = 9.488 and we can conclude that the data provide evidence against
the null hypothesis. We will reject the hypothesis that the distribution of absences
across the days of the week are uniform in favor of the alternative hypothesis that the
distribution is not uniform (at the five percent level of significance).

A 2 distribution is characterized by one parameter, v, called the degrees-of-freedom.
Although we will not use the PDF directly, it is given below as a reference. The most
common statistical packages (Excel, R, Python (SciPy)), have numeric implementations
of the PDF, CDF, and Inverse CDF of the 2 distribution. Note that the the support of the
x2 distribution is non-negative and is used to model random variables that are non-
negative.

N S
f(x) ={2"/°T(v/2)

0 otherwise

x“/Q_le*X/Qx>0andu=10rx20andv>1

The figure below shows a graph of the PDF of y2(4) used above as well as the values of
U and Ugpg.
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PDF of the Chi-Square Distribution with Four Degrees of Freedom and a

Right-Rejection Region at a Five Percent Level of Significance

0.1751
0.150
0.1251
0.100
0.0751
0.0501

0.0254

0.0001

—— X*(4) PDF
a = 0.05 (Rejection region)

The 2 goodness-of-fit test uses observed counts that fall into pre-defined and exhaus-
tive categories. To compare the empirical distribution to the theoretical distribution
defined in the null hypothesis, let's suppose that a categorical variable has K possible
values (classes), denoted as k = 1,2, ..., K. The null hypothesis specifies the (discrete)
categorical distribution p; = P(A;), the probability that the variable belongs to class
k =1, ps = P(A,), the probability that the variable belongs to class k = 2, and so on
until p, = P(Ay). In the previous discussion, the categories were the days of the week.
We could have equivalently re-coded the classes to be k=1 for Monday, k =2 for
Tuesday, etc. The observed counts are denoted by Oy for k =1,2,...K. The expected
counts are computed using the total counts n = Zf: 1Oy and the distribution speci-
fied in the null hypothesis. The expected count for class k is given by Ey = np,
k=1,2..K

The test statistic given below is used to compare the empirical distribution (observed
counts) to the theoretical distribution in the null hypothesis (expected counts):
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In other words, U follows a y2 distribution with K — 1 degrees of freedom. In the days-
of-the-week absences discussion, we have K = 5 classes (working days) so the test sta-
tistic follows a y2(4) distribution. If we want to test at a « significance level, the rejec-
tion region is defined to be values larger than u,, the value that separates the top five
percent of the x2(K — 1) distribution from the rest. In other words, the y2 goodness-of-
fit test is always a right-tailed test. If the observed value of the test statistic ugpg IS
larger than the critical value u,, ug,s > ue, then we reject the null hypothesis at an «
level of significance. Otherwise, we would say that the data does not provide evidence
for a departure from the proposed distribution.

Example 4.2.1

Suppose in the German population, the distribution of the blood phenotype AB, B, O,
and A are 5, 11, 41, and 43 percent respectively. Five-hundred randomly chosen univer-
sity students report their blood types. The counts are summarized in the table below.
Conduct a 42 goodness-of-fit test to test the claim that the proportions of blood phe-
notype differ from the baseline rates of the German population. Use o« = 0.05 level of
significance and the 1 — o = 0.95 quantile value of 2(3), u. = u3 o.95 = 7.815.

Blood Phenotype of 500 College Students

AB B ) A

29 51 207 213
Solution
The null hypothesis states that the distribution of the blood types of the college stu-
dent population is the same as the German population:

Hy:mpag=0.05,tg=0.11,mg=0.41,75, =0.43. The alternative hypothesis states
that the distribution is different. We first compute the expected counts of each of the
blood types for these students.

Exp =0.05-500 = 25
Ep=0.11-500 = 55
Eo =0.41-500 = 205
E, = 0.43-500 = 215

Next, we compute the observed value of the test statistic U~x?(3)

(20 —25)% (51 —55)°% (207 —205)% (213 — 215)

Uobs =55t 55 T~ 205 515~ 0969

Since the observed value is not more than the critical value u. = 7.815, we fail to reject
the null hypothesis at a 0.05 level of significance. In other words, the data do not pro-
vide evidence of a departure from the distribution specified in the null hypothesis.
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Contextually, in this problem, we interpret this as: “the data do not provide statistically
significant evidence, at the five percent level, that the distribution of blood type from
college students differs from the baseline distribution of the German population.”

The Chi-Square Test of Independence

A researcher would like to know if there is an association between frequency of church
attendance and political affiliation in a predominantly Christian neighborhood the Uni-
ted States. To this end, they collect data on 500 individuals. The data are the answers
to two questions: (i) How often do you attend church service per year? (i) What is your
political party affiliation? The answers to the first question are grouped into 4 catego-
ries: Cy: less than three times per year, Cy: between 4 and 8 times per year, Cs: between
9 and 12 times per year, and C4: more than 12 times per year. The answers choices for
the second questions are P;: Republican Party, Po: Democratic Party, P3: Independent.
The results of their survey are summarized in the table below.

Observed Counts of Political Party Affiliation versus Church Attendance

Political party affiliation

Church Republi- Demo- Independ- Total
attend- can cratic ent
ance
Less than 40 90 110 240
3
Between 4 60 50 30 140
and 8
Between 9 30 20 15 65
and 12
More than 25 20 10 55
12
Total 155 180 165 500

The status quo is to assume that the two variables are independent. This is the null
hypothesis, Hy. From probability theory, we know that if two events are independent,
then the joint probability is the product of the marginal probabilities. Let's use the
observed data to compute the probability that a randomly chosen person is a Demo-
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crat and attends church between four and eight times, assuming political party affilia-
tion and church  attendance are independent. The marginals are

P(democrat) = P(Cy) = % and P(b/w 8 and 8) = P(P = Py) = %
P(P = Py, C = Cy|P indep. C) = P(P = Py) - P(C = Cy) = +0 - 230 = 0. 1008

If we look at the observed (unconditional) probability, we have

P@:P%czcg=§%=01mo

Clearly, these two probabilities are difference, but is this different significant? What
about the other cells. You can verify that P(P;,C3)=0.0800 and
P(Py,Cy|Hy) = 0.14880, a greater difference. If we compute analogous probabilities for
the other cells in the table, we will see that the joint conditional probability is not the
same as the joint (unconditional) probability. We would like to test whether the overall
difference between what is observed (unconditional probability) and what is expected
(under the condition of independence) is statistically significant. Similar to the N
goodness-of-fit test, we will use counts instead of probabilities.

We will first compute the expected counts, E;;, for all the cells under Hy. For example,

Ejy =500 P(Cy, Py[Hp)

=500 P(Cy|Hy) - P(Py|Hy)
240 155
500 500

240 - 155
~ 7500

=74.4

=500 -

Similarly,

By =500 P(Cy, Py|Hy)

=500 - P(Cy [Hy) - P(Py|Hy)
240 180
500 500

240 - 180
500

=86.4

=500 -

Let Oj; denote the observed count for the cell in the j** row and jth column (with
i=1,..,4 and j=1,--3). Then, the total number of observations is n = ;O3 = 500.
Let O;. = >~;0; denote the row total of the it row and O.; = >7;O;; denote the column
total of column j. From our calculations above, the expected count, E;; in the ith row
and jth column is given by
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Eij = n

It may be helpful to remember this formula in words:

(row i total) - (column j total)
grand total

expected count in cell ij =

Using this formula, we can compute the expected counts of all 12 cells. The table below
consolidates both the observed counts and expected counts (which appear in paren-
theses).

Observed and Expected Counts of Political Party Affiliation versus Church Attend-
ance

Political party affiliation

Church Republi- Demo- Independ-  Total
attend- can cratic ent
ance

Less than 40 (74.40) 90 (86.40) 110 (79.20) 240
3

Between 4 60 (43.40) 50 (50.40) 30 (46.20) 140
and 8

Between 9 30 (2015) 20 (23.40) 15 (21.45) 65
and 12

More than 25 (17.05) 20 (19.80) 10 (1815) 55
12

Total 155 180 165 500

As with the 2 goodness-of-fit test, we will compare the differences between the
observed counts, Oj;, and the expected counts, Ej;, and aggregate all the differences to
form our standardized quantity to serve as our test statistic.

13 (0 —By)

In general, if we have I rows and J columns, the test statistic is
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1 J . 2
0= 5 3 P -

In words, this test statistic follows a 2 distribution, and the degrees of freedom is the
product of the number of row minus one times the number of columns minus one. In
our example, we have I =4 rows and J =3, columns so the degrees of freedom is
(4—1)(3-1) =6.

As with the goodness-of-fit test, the higher the value of U, the more evidence the data
provides against Hy. Therefore, we have a right-tailed test with the rejection region
being in the right tail. Using a one percent level of significance, the critical value (from
a 2 table or using a computer software) gives u, = 16.812. The observed value is com-
puted as given in the equation above and, more concretely,

Lo (40— 74.40)* L (9086 40)> L (110—179. 20)*
obs — 74 .40 86.40 79 .20
(60 — 43.40)> L (50—50. 40)> L (30—46. 20)>
4340 50.40 46.20
(25— 17.05) L (20-19. 80) L (10-18. 15)
17.05 19.80 18.15
~ 54.683

+

Since uyps > U, we reject the null hypothesis at a one percent level of significance. In
other words, the data provide evidence at this significance level that political affiliation
and frequency of church attendance are dependent.

The table below contains the commands in various common software programs to
compute the critical value of the 2 distribution with df degrees of freedom and sig-
nificance level.

Commands for Computing the Critical Value of a Chi-Square Distribution in Various
Software Packages

Software Package Command

Excel CHISQ.INV(1-a,df)

R qchisq(1-a,df)

Python + SciPy scipy.stats.chi2(df).ppf(1-a)

Matlab/Octave icdf('chi2',1-a,df)
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In both of the X2 tests we have studied, we should note that the distribution of the test
statistic is not exactly the 2 distribution. Instead, it is, asymptotically, the 42 distribu-
tion, i.e., for a large number of observations. The appropriateness of the test may break
down if almost all the cells (more than 80 percent) contain expected counts fewer than
five. In such cases, other tests are more appropriate.

Kolmogorov-Smirnov Test Of Normality

In this section, we will discuss how to perform goodness-of-fit test specifically for the
Gaussian distribution. As usual, the null hypothesis states that the distribution that the
data are drawn from follow a Gaussian distribution with known mean, p, and known
standard deviation, o. That is X, ,,,,Xni@ (u, o'). The alternative hypothesis states that
this is not the case. The test statistic used to evaluate the extent to which the distribu-
tion of the data differs from the stated normal distribution considers the maximum
observed difference between the (theoretical) CDF &(-) and the empirical CDF F(-)

evaluated at the random sample:

D= m}z(ix|<I>(x) —F(x)|

At first view, it is not clear where the random sample is used in the test statistic
because the dependence on the Xj's are an explicit. Note that the maximum is over all
possible values of x, not only on the observed values. However, as with all test statis-
tics, D indeed depends on the random sample via the empirical CDFF , which is
defined by

PG =25 # X <)

i=1

where Xg;) is the jth largest value in the random sample (ordered from least to greatest)
and # {X(i) < x} counts the number of values in the random sample that are, at most,
as large as x. Once we have observed values of the random sample xq, ..., x,, the empir-
ical CDF is Fyps(x) where X is replaced with x;) for each i = 1,...n. Therefore, in prac-
tice we will compute the value Dobs = maX“l’(X5 —Fobs(®)|. The table below gives the
critical (cut-off) values for various values of o for n =10 (to use with samples of size
10).

Critical Values for the Kolmogorov-Smirnov Test of Normality for Various Signifi-
cance Levels and Samples of Size Ten

0.001 0.58
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Critical Values for the Kolmogorov-Smirnov Test of Normality for Various Signifi-
cance Levels and Samples of Size Ten

0.01 0.49
0.02 0.46
0.05 0.41
010 0.37
015 0.34
0.20 0.32

Although we cannot compute the observed value of the test statistic by hand, to make
the ideas behind this test concrete, let's consider a data set of size ten:
{—2.43, —1.51, —1.09, —0.87, —0.58, —0.43,0.28,1.00,1.27,1.65}. We want to
see if this sample came from a standard Gaussian distribution: N (0,1). The first step is
to write down the empirical CDF corresponding to this sample: F,(x). This piece-wise
function is given by

0, x < —2.43

0.1, —2.43<x< —1.51
0.2, —1.51<x< —1.09

Fobs(X): . .

0.9,1.27T<x<1.65

1.0, x>1.65

The observed value of the test statistic is mfx“p(x) *Fobs(x>; graphically, this is the
maximum vertical distance between the graphs of ® and F,. The figure below shows a
plot of the two graphs and highlights the maximum value as D,s = 0.266. According to
the table, the critical value, the o = 0. 05, correponds to D, = 0.41. Since the observed
value is not greater than the critical value, we fail to reject the null hypothesis at
a = 0.05 level of significance. In other words, the data does not provide evidence at
this significance level that the data came from a distribution different than the stand-
ard normal distribution.
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Empirical and Theoretical CDFs for the Kolmogorov-Smirnov Test of Equality

4 B3 2 4 a4 1 2z &

——— ECDF
= GDE
— Dobs = 0.266

In our discussion above, we used the standard Gaussian distribution. However, the Kol-
mogorov-Smirnov test works with any arbitrary normal distribution, as long as it is fully
specified. In other words, we must pre-determine the mean and standard deviation of
the normal distribution we intend to test for, without using the data. It is tempting to
use the sample mean and sample standard deviation from the data for these parame-
ter values, but the test is then invalidated. If the parameters of the target distribution
are not known, a different test should be applied. The Kolmogorov-Smirnov test can
also be used to perform a goodness-of-fit test of continuous distributions other than
the Gaussian. We would just choose the appropriate CDF. In practice, many statistical
inference and statistical learning algorithms assume that the underlying distribution is
Gaussian. It is for this reason that we focus our presentation on the Kolmogorov-Smir-
nov test for this distribution.

4.3 Two-Sample Tests

In the previous section, we learned how to conduct some statistical tests comparing a
parameter of a population of interest against the known respective parameter from a
baseline population. In this section, we will learn how to perform statistical tests where
we compare parameters from two populations of interest whose true parameters are
both unknown. Such statistical tests require two samples, one from each population.
Note that in this section, we assume that the two populations are independent of one
another.
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Comparing Two Proportions: A Z-Test

Note that A/B testing is sometimes used in place of two-sample tests. Either way, we
are talking about a two-sample statistical test where each sample is (ideally) identical
in every way except in how they are “treated”” In such tests, we try to ascertain whether
the parameter of interest (proportion or mean) is associated with the type of treat-
ment.

Consider the CTR scenario discussed in the introduction. Let mp and mg denote the true
CTR for the designs A and B respectively. As in the case of single-sample tests, the null
hypothesis makes the statement of “no effect”; the CTRs are the same for both designs
or Hy:ma = mg. As with the one-sample tests, the alternative hypothesis is a statement
about a change in the CTR. It can take one of three forms: (i) design A has a lower CTR
than design B, (ii) design A has a higher CTR than design B, (iii) the two designs have
different CTRs. These three possible alternative hypotheses can be represented respec-
tively as

1. H11WA<T(B
2. Hi:mpy > 7
3. Hyimy # 7

Similar to one-sample tests, the first two are for one-sided tests and the last one is for
a two-sided test. The choice of which of the three alternative hypotheses to use must
be made before collecting or viewing any data. In our case, we want to see if the new
design, B, yields a higher click-through-rate. Therefore, we will choose Hy:wy < mp as
our alternative hypothesis.

Let's clarify these symbols further. For our scenario, we have two independent popula-
tions, A and B. Population A represents all the visitors who would be exposed to
design A, and population B the visitors who would be exposed to design B. The out-
come of each member of the populations can be represented as a random variable
X~Bernoulli(t,) and Y~Bernoulli(rg) where X = 1 denotes the event that a user from
the first population clicked on the target button and similarly for Y = 1.

Every statistical test requires data. For A/B testing, it is essential that we acquire data
from a randomized experiment. That is, for every visitor who loads the target Web page,
we randomly choose (with equal probability) to show them either design A or B.
Depending on which page they view, the visitor will represent a sample point from pop-
ulation A or B. As such, we collect two samples, one from each of the populations. Let
Xy, ..., X, denote a random sample from population A and Yy, ..., Y, denote a random
sample from population B. Note that the two samples are independent of one another.

Once we have the observed values of these samples xy,...,xy, and yy,...,y,, We can
compute the estimates of the CTRs: Ty = =37 1x; and &g = 37 1y; Theoretically,
there are two possible extreme cases that may be observed. On the one hand, we may
get Ty — g = 0 in which case there would be no reason to reject Hy, and on the other
hand, we may get [xo —@g| = 1, in which case we could certainly argue for rejecting Hy,
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Even if Hy were true, due to the inherent randomness, it is unlikely that we will see
ma —7npg = 0. Similarly, if Hy were false, it is unlikely that we observe a specific differ-
ence in the sample proportions: Tp —®g =0.1. It is more appropriate to compute
probabilities of a range of values.

If Hy were true, how likely is it that we observe Tp — g < d? We can ask this question
using the estimators 7, = éZ?: 1 X; and &g = %Z}l: 1Y; as follows

P(fa —7p < d|mp = 7p)

To compute such a probability, we need to know the distribution of T — . It turns
out that if the samples are large (m, n are large), the central limit theorem tells us that
the standardized difference of sample proportions is approximately normally distrib-
uted (conditioned on Hy:ma = mR). Symbolically,

Ty —Fp

V=SB, —7)

PO v (), 1)

Recall that viz, —7p] = V[7,] + V[Fg] = mall =) + "B ~"B) Since we don't know
the true proportions, we can approximate Lhrél variance blf/ replacing these with their

: Cule o~ Tall=ma) 7Bl -TR
estimators: y[z, —7p] ~ — + - . Therefore, we have

ma(l—=y) wp(1—7p)
m n

SE(7, — 7p) ~ SE(%, — 7p) = \/

Now, the probability from P(%, — g < d|ms = wp) can be written as

U<c—4d

_m =P(U<u) =)

where ®( - ) is the CDF of the standard Gaussian distribution.

This brings us to the second part of hypothesis testing: the test statistic (U), and the
rejection region. The probability measures how likely we are to observe a data set
which corresponds to a difference in proportions of at least d, given that the null
hypothesis is true. Intuitively, if the null hypothesis were true (the true proportions are
the same), the probability of observing a large (negative) difference in the proportions
will be small. Analogously, the probability of observing small differences will be large.

The significance level o is the maximum probability of type | error we want to be sub-
ject to. In other words, given that the proportions are the same, we want to reject the
null hypothesis (incorrectly) at most 100a % of the time. If & = 0.01, this means that
the probability of making a type | error should be no more than one percent. With this
in mind, we decide to reject if the probability is less than o = 0.01. The set of values of
u for which P(U < u) < o is called the rejection region. The cutoff value is called the
critical value, denoted by u. which comes from P(U=u,)=a. In our case, with
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a=0.01, u is just the quantile of the Gaussian distribution corresponding to one
percent, &(u,) = 0.01 or u, ~ —2.33. Therefore, the rejection region corresponding to
a significance level of o =0.01 is the values in the set RR = {u|u < 2.33}. If we
observed data that corresponds to a test statistic value (u) of less than 2.33, then our
decision will be to reject the null hypothesis at the one percent level of significance.
This would indicate that it may be the case that the design B would result in a higher
CTR than design A.

Example 4.3

Continuing from our discussion about comparing CTRs, suppose we observed 567 clicks
out of 900 and 650 clicks out of 950 from samples obtained from designs A and B,
respectively. Compute the observed test statistic u,,s of U and write the decision of the
A /B test at the one percent level of significance.

Solution
The sample proportions are given by w1, = % =0.6300 and 7 = %a ~ 0.6842. The
standard error (standard deviation of the difference in sample proportions) is compu-

ted by

567 333 650 300

SE(RA —7g) \/90(’90300 + g ~ 0.0221

Putting these numbers together, we can compute the observed value of the test statis-
tic from the equation for U above as

0.6300 — 0. 6842
Ugps = 0 0251 ~ —2.4525

As mentioned in the discussion, this is a left-tailed test with rejection region
RR = {u|u < —2.33}. Since the ug falls in the rejection region, we will reject the null
hypothesis at a one percent level of significance. Therefore, the data provides evidence
in favor of the alternative Hy:mp < mp; design B may have a higher CTR.

Changing designs or making recommendations cannot happen with the result of a stat-
istical test alone. As discussed in the first section of this unit, other considerations,
such as the practical significance must be analyzed. Here the observed effect is
Ty — T~ 0.6300—0.6842 = —0.0542. In other words, the change in CTR favors
design B by about a five percent margin. A business analyst, together with the design
team, may need to decide whether such an increase in CTR warrants the deployment of
additional resources in order to make the change permanent. This consideration is out-
side the scope of the statistical test we have conducted and is left to the relevant
experts.
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Comparing Two Means

In section 41, we discussed how to test a claim involving the true mean of a population
of interest with a baseline value. In this part, we will learn how to test claims about
how the true means of two independent populations compare. The null hypothesis, the
status quo, states that the two means are equal: Hy:py = po, while the alternative can
take different forms:

+ two-sided test (two-tailed rejection region): Hy:py # po
« one-sided test

+ left-tailed rejection region: Hi:  py < po

+ right-tailed rejection region:Hy:  py > po

As before, the alternative hypothesis, as well as the significance level, o, must be speci-
fied before analyzing any data. The framework for comparing two means from inde-
pendent samples is similar to any other hypothesis test. There are four parts:

Hypotheses

o and choice of test-statistic

Observed value of test-statistic and defining the rejection region
Decision

N =

To discuss the three most common cases of comparing means from independent popu-
lations, the overall framework is the same. The only thing that changes is the test-sta-
tistic and its associated distribution. Let p; and py denote the true but unknown means
of the (independent) populations of interest and let X1,-.., Xy, and Y1,--, Yy, denote
two random samples, one from each population. Note that the sample sizes are deno-
ted by ny and n,, respectively. The observed values of these samples are denoted by
X1, - Xy and Y1, -+ Yny respectively. The one assumption shared by each of the three
cases we discuss below is that either both n; and ny are large enough to allow the cen-
tral limit theorem's approximation of the normal distribution of the sample means X
and Y, or, the underlying distribution from which both samples are drawn are (at least
approximately) Gaussian. If neither of these conditions are satisfied, then the tests may
not be valid. The three cases we discuss are based on information about the variances
(standard deviations) of the underlying distributions:

1. The variances of the two populations, ¢} and o9, are known.
2. The variances of the two populations are unknown but assumed to be equal.
3. The variances of the two populations are unknown and assumed to be unequal.

In the first case, we will use a Z-test, that is, a test based on the Gaussian distribution.
In the other two cases, we will use a T-test, that is, a test based on the Students' T
distribution.
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Known Variances: A Z-Test

The null hypothesis, Hy:py = po can also be written as Hy:py — po = 0. Written this way,
it motivates us to compute the difference of the sample means, X —Y and compare
this difference to zero. Indeed if the difference is far from zero, we will tend to reject
the null hypothesis. As before, instead of working with this difference, we would prefer
to work with a standardized value. If the samples are drawn from independent Gaus-
sian distributions, then

(X =Y)~N|pg — pa, o
2

of |
- :

Under the null hypothesis, we know that py — pg =0, SO

2 2
— — [0 o
(X —Y)-|o0, —1+—2).
np 1y
Therefore, the quantity
U = e (0, 1)
o1 93
np " ng

This random variable is our test statistic. The observed value of this test statistic repla-
ces X and Y with the observed sample means, x and y, respectively. Finally, the rejec-
tion region is developed in exactly the same way as with any other Z-test.

Example 4.3.2

The hourly wages of two companies, A and B, are normal distribution. The variances of
hourly wages are o = 20 and 03 = 18 for companies A and B, respectively. A researcher
wants to know if the average hourly wage of the two companies are different. To this
end, they collect the hourly wages of 20 workers, 10 from each of the two companies.
The sample means are x =15.23€ and y =14.15€, for companies A and B, respectively.
Conduct a hypothesis test at a five percent level of significance to address the
researcher's interest.

Solution
The distribution of the hourly wages are Gaussian for both companies and the varian-
ces are known. Therefore, we can conduct a Z-test.

1. Hy:pq = pg, the mean hourly wages of the two companies are the same. Hy:pq # po,
the mean hourly wages of the two companies are different.
2. a=0.05and
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v X-Y
2 2

o1 09
(v

3. The cutoff values are u, = 4 zgg95 = % 1.96, so the rejection region is
RR = {u|lu< —1.96 or u> 1.96}. The observed value of the test statistic is

~N(0,1)

15.23—14.15
Ughs = ﬂ ~ 0.55

101 10

4. Since ugpg IS NOt in the rejection region, we fail to reject the null hypothesis at a five
percent level of significance.

Following our decision statement, we can say that the data do not provide evidence of
differing average wages between the two companies (at the given level of significance).

Unknown/Equal Variances: A T-Test

The second case in testing for equality of means arises when the variances of the pop-
ulations are unknown but assumed to be equal. In this case, we need to adjust the test
statistic because we don't know the values of 6% and o3. As such, we need to replace
these quantities by an estimate of a common sample variance, this quantity is called
the pooled variance, Sf) ,and is computed as

82 _ (nl — 1)8% + (n2 — 1)8%

p n1+n2—2

where S% and s% are the sample variance of the Xj's and Yj's respectively (i=1,...m
and j=1,...,ny). The associated test statistic follows a T distribution:
X—-Y

_|_

—1 1 ~T(1’11 + g — 2)
Sp | + =
n1 112

The quantity v =mny+ny—2 is the degrees of freedom of the T distribution. The
observed value of this test statistic comes from replacing X, Y, Sf, and Sg with the
observed values x, ¥, s%, and s%, respectively.

U=

Example 4.3.3

A researcher wants to see if the average (yearly) salary of male managers at a certain
company is larger than the average salary of female managers. They assume that the
salaries of male managers and female managers are approximately Gaussian with
equal (but unknown) variances. The researcher collects a random sample of 32 manag-
ers, 16 males and 16 females. The table below summarizes the data.

Unit 4

125



126

Unit 4

Data Summary for Example 4.3.3

Males x = 150,000 s = 3100 n; =16

]
[

Females 125,000 s1 = 2900 ny =16

Test the researcher's claim at a o = 0. 01 level of significance.

Solution

Since the salaries of the managers of the males and females are normal distribution,
and the variances are unknown but assumed equal, we will use a T-test with the
pooled variance version of the test statistic. Let py and py denote the average salaries
of the male managers and female managers, respectively.

1.

Hy:pq = o, the average salary of the male and female managers are the same.
H;y:pq > po, the average salary of male managers is more than the average salary of
the female managers.

a=0.01and

X—-Y

U= ﬁ~T(30)
Sp\16 T 16

The cutoff value is u, = t39 9.01 = 2.457 and we have a right-tailed rejection region:
RR = {u]u > 2.457}. The observed values of the pooled variance and pooled
standard deviation are

5 15-3100° + 15 - 2000°
= 30

sp = 9,010,000 ~ 3001 .67

Next, the observed value of the test statistic is

= 9,010,000

15,000 — 125, 000
Uobs = 1

1
3001. 675 + 15

~ 2.945

Since the observed value is in the rejection region, we reject the null hypothesis at a
one percent level of significance.
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Following our decision, we can say that the data provide evidence that the average sal-
ary of male managers is higher than the average salary of female managers (at the
given level of significance).

Unknown/Unequal Variances: A T-Test

The final case we will discuss arises when the variance of the populations are unknown
and cannot be assumed equal. In this case, we can replace o% and o%, from the test sta-
tistic of the Z-test (known variances) with S% and Sg respectively. The distribution of the
resulting test statistic is approximately T (Welch, 1947):

X-Y

U= 5 2~T1/
ST 5%
T

where the degrees of freedom, v, is given by

2
(S% S%)

nq n9

8)

n%(nl — 1> + n%(nQ — 1)

Although the computation of vy, the degrees of freedom, is quite involved, almost all
common statistical packages have implementations to perform this T-test. The table
below shows how to conduct the T-test with two independent samples, x and v,
assuming the variances are unknown and unequal. All commands use a two-tailed
alternative hypothesis by default. This test is sometimes called Welch's test after the
famous statistician who developed it.

Commands for A T-Test with Unknown and Unequal Variances in Various Software
Packages

Software Package Command

Excel =T.TEST(x,y,2,3)

R t.test(x,y)

Python + SciPy scipy.stats.ttest_ind(x,y,equal_var=False)

Matlab/Octave ttest2(x,y, 'Vartype', 'unequal')
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4.4 Power, P-Values, and Confidence Intervals

The Power of a Test

In section 41, we discussed that when conducting a hypothesis test, depending on the
decision, there are two possible errors that could be made: (i) A type | error where we
reject a true null hypothesis and (ii) A type Il error where we fail to reject a false null
hypothesis. The probabilities of committing such errors are denoted by « and B,
respectively. Namely,

o = P(reject Hy|Hy is true)
and
B = P(fail to reject Hy|H, is false)
A closely related quantity is the power of a test. Informally, this quantity is the proba-
bility of detecting an effect when there actually is an effect. In other words, the power
of a test is the complement of the type Il error:

power =1 —

If we can compute one of these, 3 or power, then the other quantity is just the comple-
ment. For general statistical tests, computing these probabilities is very difficult. Conse-
quently, we focus on a one-sample Z-test.
We recall the setting for a one-sample Z-test. Xy,...,X, are independent Gaussian
N (p, o) with o known. The probability of a type | error, o, is set and the null hypothesis

is Hy:p = pg (for some value of p. Let's consider a right-tailed alternative, Hy:p > py,.
The associated test statistic is

The critical value is given by u. = z, and the rejection region is RR = {u|u > u.}. The
rejection region can also be specified in terms of the sample mean: RR = {x|x > x.}
with x, = uOJruC-%
The probability of a type Il error as well as the power of a test are computed for a fixed
alternative value p = pq with pg > po:

B) =P(X ¢ RRJp =) = P(X < xJp =)

We have made the dependence on p; explicit by using the notation B(p;) instead of B.
Similarly, the power of the test for this alternative is given by
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power (py) = P(X > x.[u = )

The figure below shows the two distributions of X, one under Hy:p = pg and one under
H;":p = py. Additionally, we have highlighted the areas that correspond to the type |
and type Il errors, « and B, respectively.

Type Il Error and the Power of a Test Plotted Against the
Probability of a Type | Error

0.0 0.1 0.2 0.3 0.4
— The alternative value and the
———— Power sample size are fixed.

For a fixed value of the alternative, p =y (equivalently, a fixed effect size p; — pg),
there is a trade-off between 8 and o. If we make o small, then the rejection region gets
smaller and B(py) = P(X ¢ RR|p = py) gets larger. This trade-off is demonstrated in
the figure below, which shows the graphs of B(j,) and power(j,) against o, for fixed p;
(and fixed sample size, n).
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Distribution of the Sample Mean under Two Competing Hypotheses
Together with the Probabilities of the Type | and Type Il Errors

X~ N(ug.0/+/n)
—— X~ N(uy,0/+/n)
—_— O
——

We certainly want the power of a test to be as large as possible. Therefore, it is impor-
tant to also understand its relationship with the effect size u; — pg as well as with the
sample size n. For a fixed o we have

power(jy) = P|X > g + 7, - %‘M = m)

X Mo — M1 + Zo - T
7“1 0 M1 o
=P 5 > p ﬁu:m
Vu Va
o
Ho — M + 2o =
—Plz> _°
7
—p|z>" "M, | where Z-3(0,1)

Vn

For a fixed sample size, n, we can see that for a larger effect size, when p; becomes
larger and larger than py, the probability increases. This is because the right-hand side
of the inequality describing the event becomes a larger negative value and so the
event [Z > ...] is larger. In other words, the larger the effect size (with « and n fixed), the
higher the power of the test. The graph below shows the relationship between the
power of a test versus effect size for various values of q.
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Power of a Test versus Effect Size

(Fixed Sample Size and Various Significance Levels)

120
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In contrast, if we fix the effect size (i.e., fix py), then for a given q, the larger the sample
size, the smaller the power. The following figure shows the relationship between the
power of a test and the sample size.
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Power of a Test versus Effect Size

(Fixed Effect Size and Various Values of the Significance Level)
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During the planning phase of conducting a statistical test, we have various choices to
make. We need to determine the direction of the alternative hypothesis (two-tailed,
left-tailed, right-tailed), our tolerance for a type | error, o, and, for a desired effect size,
our desired power. As such, we can aim to satisfy our requirements by choosing the
correct sample size. To demonstrate how this is done, let's fix Hy:p = pg, and plan to
detect an effect size corresponding to p =y for a right tailed test, that is p; > pg. We
want to have a type | error of o and type Il error of 8 (power = 1 — 3). We have

where Z~N (0, 1). From these equations above, we have

=
ZOL-I-ZB:%

Vn

or equivalently,
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2
(20 +23)
n=——5—

(1 — Mo) o?

Example 4.4.1

A researcher wants to conduct a hypothesis test with Hy:p = py =0 and Hy:p > 0 for a
qguantity that is known to follow a Gaussian distribution with known standard deviation
o = 1. The researcher wants to be able to detect an effect corresponding to p; =0.5
and their tolerance for the type | error is o = 0.10 and desired power is power = 0. 80.
What is the sample size they should collect?

Solution
Following the formula above, we have z, =7y 19 = 1.28. Since power = 0.80, we have
8=1-0.80=0.20,and z3 =7y 99 =0.84. Using o =1 and p; = 0.5, we have

2
L_.2840.8)° o

(0.5 —0)%(1)

Therefore, with a sample size of n = 18, the test will satisfy o ~ 0.05 and power ~ 0. 80.

P-Values

In practice, the value of o chosen by researchers is somewhat arbitrary. Therefore, two
researchers with the same data may have opposing conclusions of the same hypothe-
sis test. It may be that one researcher chooses o =0.05 and another chooses
o = 0.01. The former may reject the null hypothesis while the latter may fail to reject
it. Technically, as discussed above, the choice of o must be made carefully with respect
to B/power. Many publications require that researchers report the smallest value of «
that would lead to a rejection of the null hypothesis, also known as the p-value. How-
ever, as we have mentioned frequently in this unit, since o must be chosen, before
looking at the data, the interpretation of the p-value is prone to misinterpretation.

For a test statistic U, the p-value is the smallest value of o for which the observed data
suggest that the null hypothesis be rejected. In this setting, the smaller the p-value, the
more likely that the null hypothesis is to be rejected. To understand the intricacies
involved, let's consider a test with hypotheses Hy:p = pg and Hy:p > py. Let U denote
the associated test statistic and u, the associated observed value. The p-value is the
probability of observing a value of U that is at least as extreme as the observed value,
where the probability is computed under the assumption that the null hypothesis is
true. Formally,

p-value = [P(U > uobsh‘L = MO)

Suppose the U follows a T distribution with 30 degrees of freedom: U~T(30). If
Uohs = 2.21, then
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p-value = P(U > 2.21|p = py) ~ 0.0174

In other words, 0.0174 or 1.74% is the smallest value of o that would lead to a rejec-
tion of the null hypothesis.

If the alternative hypothesis was two-sided, Hy:p # pg, the statement “at least as
extreme” means that we have to consider both directions of the extreme values,
extreme and above and extreme and below the opposite. In other words, we have

p-value = P(U >2.21 or U < —2.21|p = ) ~ 0.0279
Since T is a symmetric distribution we could have also computed this as
p-value = 2P(U > 2. 21|p = pg) ~ 0.0279

The key here is to understand that u,,s comes from a random sample. As such, it is a
random quantity and makes the p-value a random variable. In fact the p-value
~Uniform(0, 1), i.e. it follows a uniform distribution on the interval [0, 1]. Due to this
fact, the p-value has very high variation.

A common misconception is that the p-value can be used to assert that the alternative
hypothesis is true. Instead, a small p-value casts doubt on the null hypothesis and
encourages a researcher to continue in the direction of the research. Another miscon-
ception is that a large p-value indicates that the observed effect is due to random
chance. Instead, it is important to note that the alternative hypothesis may still be true,
even if a large p-value was obtained. This is because a large p-value just means there is
no evidence against the null hypothesis, and we should not interpret this as evidence
of absence of an effect.

What happens if two studies that are replications of the same test, with different data,
report the same small p-value? Does this mean that the null hypothesis is false? Not
necessarily, and we cannot make this conclusion alone. We must consider the effect
size reported by these researchers. If they are not comparable, then their word doesn't
lead to the same conclusion. Additionally, even if the data are not too different, due to
randomness, one study may find a significant effect while the replication doesn't. Per-
haps the p-values are so close to the threshold that one is just under and the other is
just above.

There is both an advantage and disadvantage of reporting p-values. The advantage is
that instead of reporting the decision of whether to reject the null, the decision can be
left to the reader. The disadvantage is that p-values are frequently misinterpreted in
practice. Therefore, decisions based only on p-values are meaningless. Additionally, a
small p-value doesn't indicate an effect size that is practically significant.

Probably the single most important quality of any scientific study is its replicability.
This quality forms the basis of how much (or how little) the p-value informs our deci-
sion to reject or fail to reject the null hypothesis. The reason replicability is important
here comes from the right-hand side of the probability statement. The event
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[U > ugs/Hg| assumes that it is theoretically possible to repeatedly sample data, from
the same population, and with the sample size. If this is the case, the p-value is the
long-term proportion of those samples that results in a test statistic that it at least as
extreme as the one we observed from our single sample.

The issues that exist in the scientific community with regards to computing and inter-
preting p-values lie in the assumption of replicability. For example, if a researcher col-
lected a sample and the result p-value was not as small as they desired, they may sam-
ple more and more data until the p-value was small enough for the publication (this is
known as “p-value hacking”). There are two issues with this: it violates the assumption
of replicability with the sample size, since the sample size was not fixed in advance and
the power decreases! It is worth noting that a test statistic such as the one given below
tends to increase with larger values of n, which in turn increases u,s decreasing the p-
value:

The example below illustrates one of the issues with p-values.

Example 4.4.2

A student answers ten (factual) true/false questions and gets seven correct and three
wrong. The null hypothesis states that the student guessed on every question. Compute
the p-value under two scenarios:

1. The number of questions, ten, was predetermined and fixed.
2. The student is asked questions repeatedly until they get three wrong.

Solution

1. The p-value is the probability of observing a value as extreme as the one we have
observed. In this context, this is the probability of observing at least seven correct
answers. The binomial distribution is appropriate here. Let U~Binomial(10,0.5). We
can use the binomial distribution because (i) the number of questions (trials) is
fixed, (ii) the questions (trials) are independent, and (iii) the probability of getting a
question right is fixed (50%) from one trial to the next. The p-value is

PU>7)=P(U=7)+P(U=8)+P(U=9)+P(U=10)~0.055
2. In this scenario, the test statistic U follows a negative binomial distribution

U~Neg-Binomial(3,0.5), which models the number of questions until three incor-
rect questions are observed. The p-value is computed as

PU>7)=PU=7)+P(U=8)+--~0.011
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If we were to use a threshold of o = 0.05, the first scenario doesn't cast much doubt
on the null hypothesis, while in the second scenario it does. This is an important con-
sideration since we used the same observed data in both scenarios!

Another issue with very small p-values is that even if all assumptions of a test are sat-
isfled, we must be careful to assess the practical significance of the observed effect
size against the statistical significance. We mentioned this for rejection region-based
decisions, but it is even more important here. Suppose that a certain procedure
extends the life of cancer patients by one week on average. Suppose further that this
effect was statistically significant with a very small p-value. Before recommending such
a treatment, it would be wise to consider whether it is practically worthwhile. Statistical
theory (even very small p-values) is not equipped to make such determinations.

Example 4.4.3
Compute the p-value for example 4.3.3 about the average salary of male managers ver-
sus female managers.

Solution
Recall thag thjs example had hypotheses: Hy:py = pg and Hy:py > po. The test statistic

is 11 ~T and u,,s = 2.945. The p-value is given by
S\ 16 * 16

p-value = P(U > uy,s) = P(U > 2.945) = 0.0031

Confidence Intervals

Confidence intervals provide a range of values to estimate a parameter of interest. In
contrast to a point estimate (a single value), an interval estimate also considers the
uncertainty associated with the estimation and is therefore superior to a point esti-
mate. Additionally, as we see below, confidence intervals have the additional strength
of helping us make decisions regarding hypothesis tests as an alternative to rejection
regions or p-values.

If the point estimator of the parameter of interest follows a symmetric distribution
(Gaussian or T distribution), then the associated confidence interval is a random inter-
val of the form

0+ ME

where § is the estimator of the parameter of interest §, and ME is a positive value that
determines the width of the confidence interval. The estimator § is based on a random
sample and is a random variable. The margin of error (ME) contains information about
the uncertainty of this estimator. The probability that a confidence interval contains the
true value of the target parameter is called the confidence level (CL). The relationship
between CL and the significance level « are related by CL =1 — « for two-sided
hypothesis tests. The confidence level also affects the margin of error. For a given
uncertainty, the width of the confidence interval, via ME, is determined by the confi-
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dence level. The larger the confidence level, the larger the margin of error, and vice
versa. Intuitively, the larger the basket (confidence interval), the more likely it will catch
the ball (true value of the target parameter). Similarly, for a given confidence level, the
larger the uncertainty, the larger the margin of error.

Suppose that Xy,..., X, is an independent sample from a Gaussian distribution N (p, o)
with unknown p, and known ¢. We want to find a (1 — o) % confidence interval for p. We
use the sample mean as our point estimate. § = X, which is also Gaussian with the
same mean but scaled standard deviation: X~ (p, o /yn). We want our confidence
interval to contain p with probability 1 — . In other words,

l—a=PX-ME<p<X+ME)

This is equivalent to

a=P @ >@ =P |Z|>@
Vi Vi Vi
or
Q_plz s ME
2 o
Vn
ME _
Therefore, &~ “o/2 Finally, the margin of error is given by
Vn
ME = 7, /9 ——
Zo )2 \/I_l

Therefore, under the conditions on the random sample stated above, the confidence
interval is given by

[e) ~ (0
X*Zu/Q'ﬁSHSX+Z@/2'ﬁ

Once we have the observed values of the random sample, xy, ..., x,, we can report the
observed confidence interval via by just replacing X with x:

o

— o —
X*Z(X/Q'ﬁéuﬁ)wza/g'ﬁ

If we are asked to find a 95 percent confidence interval, we would compute the associ-
ated critical z value, 2 .05/2 = Z9.025 = 1 - 96, and our confidence interval would be
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[0}

$—1.96-<p<x+1.
X196 < p S X+ 196

For a 90 percent confidence interval, we have zy_1/2 = %p.005 = 2- 58 so that our confi-
dence interval would be

_ [ _ o
—2.58—F=<p< 2.58—F
X <p<X+ \/1_1

/o

Now suppose that the conditions on the random sample are the same, except that the
standard deviation, o, is unknown. We can replace 42 with g2, the sample variance esti-
mator, or o with g — \/? in which case the sample mean would follow a T distribution
with v = n — 1 degrees of freedom: X~T(n — 1). The rest of the analysis is similar with
zq /2 replaced with t, 1 /2. In this case, the (observed) confidence interval would be

3 — S
SMSX'Ftnfl,u/Z'ﬁ

X_tnfl,a/Q'

=

For example, given a sample of size n = 20, the 95 percent confidence interval would
use the T critical value t1g .25 = 2.09 so that the confidence interval is

X—2.09- =< p<x+2.09-

£
5

Example 4.4.4

Take the scenario from example 4.1.3 about the birth weight in a town. The sample of 12
newborns gave a mean birth weight of 3250 grams and a standard deviation of 250
grams. Construct a 99 percent confidence interval for the true mean of newborns. Use
t11,0.005 = 3 1L

Solution
A (1 — o)100 % confidence interval for the true mean y, is given by

S S

+tnfl,u/2'ﬁ

>
o+
=
|
l—‘
Q
~
[\
=
A
=
IA
>

wheren =12, « = 0.01, s = 250 and x = 3250. Therefore,

250 250
3950 —3.11- 220 — <3950 £ 3.11. 220
N - J12

0or 3025.56 < p < 3474 .44

On their own, confidence intervals are very useful to describe the precision of the point
estimate, however, they can also be used to make decisions about the null hypothesis:
Hy:6 = 0. If we are conducting a two-sided test, H;:6 # 8, then we can reject the null
hypothesis, at a o level of significance, if 8, is not contained in the (1 — «)100% confi-
dence interval. If we are conducting a left-tailed test, Hy:0 < 0, then we reject the null
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hypothesis if 8 is greater than the upper bound of the confidence interval. Finally, for a
right-tailed test, H;:6 > 6, we reject the null hypothesis if 8, is lower than the lower
bound of the confidence interval.

Revisiting example 41.3, we had Hy:p = pg = 3480 and Hj:p < pg = 3480. Since this is a
left-tailed test, we reject the null hypothesis if pg= 3480 is greater than the upper
bound of the confidence interval. Indeed, from the result of example 4.41, this is the
case as the upper bound of the confidence interval is 3474.44. Since the confidence
interval was constructed using a 99 percent confidence level, the decision is made at
the a = 1% level.

So far we have discussed confidence intervals for unknown parameters of a single pop-
ulation. We can also construct confidence intervals for the difference of two parameters
from independent populations. The derivation of these results are the same for the
one-sample case. We summarize the formulas in the following table.

Confidence Intervals for the Difference of Parameters from Two Independent Popu-
lations

Assumptions Difference Margin of error (ME)
Large samples T — Tg 711 —71) Tl —7F9)
ZO‘/2 nq + no
Gaussian (o1, 09 known) 1 — Mo o? o3
Zo/2\my T ng

: 1 1
Gaussian (o1 = 09 (1 u,0/25p 27 + 2ot
unknown) vV =mn;+ ny— 2
Gaussian (o1 # oy 1y — po 2 3
unknown) bow, 0/2 T

The quantity s, is the pooled standard deviation we discussed in section 43 and vyy is
the degrees of freedom from Welch's test.

Example 4.4.5

Referring to example 4.3.3, find a 99 percent confidence interval for the difference in
means, By — po, Where pg is the average yearly salary of male managers and psy is the
same for female managers. Use the confidence interval to make a decision about the
hypotheses Hy:py = po and Hy:py > ps.
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Solution
In example 4.3, we assumed that the unknown variances of the two populations were
equal. Therefore, the appropriate confidence interval is

_ 1 1
(x—-7y) itu,a/zspﬁn—l + TN +1n9—2

From the solution of example 4.33, we have s, ~ 3001.67. We are given x = 150, 000,
and y = 125,000, SO X —y = 25,000. Also, nj =ny =16 and so v =16+ 16 —2 = 30.
Since we want to compute a 99 percent confidence interval, we have
a=1-0.99=0.0150 a/2=0.005 and t3p 9.005 = 2. 75. Putting this all together, we

so the confidence interval is
22081.56 < g — pg < 27918.44

To inform our decision regarding the hypothesis test, the difference under the null
hypothesis u; — po = 0 is less than the lower bound and, therefore, we reject the null
hypothesis at a one percent level of significance.

4.5 Multiple Testing

Multiple testing is about testing two or more null hypotheses. When we want to test
each of the many null hypotheses separately, the probability of committing a type |
error is amplified, and we need to find ways to control it. In this section, we first detail
why the issue of amplification of the type | error comes. Next, we discuss two error con-
trol measures and how to apply them. Let's start with an example.

Suppose that 100 students take a ten-question factual true/false quiz. We want to see
if the students guessed on the quiz. In this context, we perform 100 hypothesis tests,
one for each student. Let's say that for each hypothesis test we choose a five percent
level of significance, that is « = 0.05. The null hypotheses, H{" 1?), ... H{'*" each say
that the respective student guessed randomly on the quiz. The probability that at least
one true null hypothesis is rejected is 1 — . 95100 — (994, which is quite high. This is
not very promising! What value of o should we choose for the individual tests so that
the probability of rejecting at least one true null hypothesis is small, say 0.05? In our
case, with 100 hypotheses, we should put o = 0. 0005:

100 100
1—@—a) <00&:@—u) >0.95=1—a=0.95"1%~0.9995 = o < 0
.0005.
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This type of error is called a family-wise error rate (FWE). The typical method of control-
ling this type of error is the Bonferroni method, which rejects a specific null hypothesis
if its corresponding p-value is less than a/m, where m is the number of hypotheses. In
our case, a/m = 0.05/100 = 0.0005. That we obtained this value from our computa-
tion above should be surprising because when « is small and m is large,

1—(1—&)1/1nzu/m

The issue with this type of control is that the multiple testing procedures might result
in low power. Recall that the type I error (in this case a/m) and type Il error (8) have an
inverse relationship. So when a/m is too small, 3 might be unacceptably large, in which
case the power of the test is too low. Therefore, we need an alternative error measure
to control.

When we have many hypothesis tests, it makes sense to allow a small proportion of
true null hypotheses to be rejected. This way, the power won't be too low. To this end,
we discuss a measure that controls the proportion of true null rejected hypotheses. We
will need some preliminary quantities:

(false positives) is the number of true null hypotheses that are rejected.
(true positives) is the number of false null hypotheses that are rejected.
(true negatives) is the number of true null hypotheses that are not rejected.
« FN (false negatives) is the number of false null hypotheses that are not rejected.
» Risthe total number of rejected null hypotheses: R = FP + TP

- m is the total number of null hypotheses.

 m — Ris the total number of null hypotheses that are not rejected.

* my is the total number of true null hypotheses.

* m — mygis the total number of false null hypotheses.

FP
« TP
TN

A two-way table is a good way to remember these quantities.

A Summary of Quantities from the Result of Multiple Hypothesis Tests

True Hy False Hy Total
Reject Hy FP TP R
Do not Reject Hy TN FN m— R
Total mg m — myg m

In a (single) hypothesis test, we like to have a small probability of rejecting a true null
hypothesis. In other words, we want a small chance of a false positive or a false discov-
ery. If we take this interpretation and apply multiple hypothesis testing, we can require
a small false positive rate or false discovery rate (FDR). The FDR is defined as the expec-
ted proportion of false positives with respect to all positives:
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FDR = [E{E} = [E[

FP}
R

FP+TP

The downside of this quantity is that since the random variables FP and TP are not
observable, the expectation is impossible to compute. A workaround (for uncorrelated
or positive correlated tests) was proposed using marginal p-values, the p-values asso-
ciated with each null hypothesis. We reorder the hypotheses in increasing order with
respect to their p-values:

where the p-values are in non-decreasing order
Next, we choose the largest positive integer k, such that
k
pik < E cQ

Then, the hypotheses H(()il)ng@’ ,,.7H(()ik) (with the new ordering) are rejected, indicat-
ing a statistically significant effect.

Summary

In section 41, we discussed the general framework of hypothesis testing as a way to
address claims about the population mean or proportion from a single population
using an observed sample. Section 4.2 uses the general framework of hypothesis
testing and applies it to a non-parametric setting.

In section 4.3, we learned how to apply the framework of hypothesis testing to the
cases where we have to compare analogous parameters of two populations. The
interpretation of these test as well as their limitations still abide by those of the
one-sample tests. It is important to note the underlying assumptions when using
these tests. The quality of a test is measured by various quantities, type | errors,
type Il errors, and the power of a test. The p-value is intimately related to these
guantities. It has a place in interpretation but it is often misinterpreted. Therefore,
reporting the relevant confidence interval is important upon conducting a hypothe-
sis test. These qualities, the p-value and confidence intervals, are the discussion
points of section 4.4.

Finally, in section 4.5, we outlined why we might need to conduct multiple tests and
the challenges that come with them. We learned how to address some of these
challenges using two different measures of error control. Throughout this unit we
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have stressed this takeaway: even if we come to a decision to reject the null
hypothesis (which means we have detected an effect), this alone cannot inform
policy or recommendation or action. In real-world applications, we need to follow
up with replication of the tests, and then determine if the detected effect sizes are
of practical importance.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!
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STUDY GOALS

On completion of this unit, you will have learned...

. the basic elements of statistical decision theory including loss function, decision
function, and risk function.

. the definitions of minimax risk, Bayes risk, minimax decision functions, and Bayes
decision functions.

.. the definition of admissibility of a decision function.

. about Stein's Paradox together with an illustration using the James-Stein estimator for
multiple means.
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5. Statistical Decision Theory

Introduction

We are interested in building a spam filter that automatically classifies incoming emails
as “spam” or “not spam.” When this filter makes an error, the user incurs a loss (wasted
time). If the filter lets a spam email go through, then the user has to spend time delet-
ing the email (one second). If the filter blocks a non-spam email, then the user has to
dig through the spam folder to find the “good” email and loses a lot of time (100 sec-
onds). Applied to statistical decision theory, the spam filter is called a decision func-
tion which tries to guess the true state (spam or not spam) of a previously unseen (ran-
dom) observation (an email). In this unit, we will learn how to measure the quality of
such decision functions.

In section 1, we introduce the basic elements of statistical decision theory including
decision, loss, and risk functions. We will see how to use these elements to frame
questions about how well our decision function (estimator) is performing. In section
5.2, we consider some ways of defining an optimal decision function for a target param-
eter of interest. In particular, we consider the mini-max risk, together with the associ-
ated mini-max decision function (estimator). We also define and discuss a Bayesian
treatment where we define the Bayes risk and the corresponding Bayes decision func-
tion (Bayes estimator), which minimizes this Bayes risk. Finally, in section 5.3, we review
an important concept, admissibility, which is a desirably quality of a decision function.
Contrary to intuition, when we aim to estimate three or more independent target
parameters simultaneously, we will see how the “usual best” estimator for each param-
eter is not the best option. This rather paradoxical result is called Stein's paradox. Sec-
tion 5.3 ends with the James-Stein estimator (decision function) for estimating three or
more means of independent Gaussian distribution. You may be surprised by the result.

5.1 The Risk Function

Consider the problem of determining whether an email is spam. We aim to do this by
making a decision § based on an observation x. In this case, x contains information
about the email such as the sender, subject line, or text. The state of the email is the
true classification, which we may encode in the variable y. We will choose y = 0 to indi-
cate “spam” and y = 1 to indicate “good.” Our task is to come up with a decision func-
tion § which assigns a zero (“spam”) or 1 (“good”) to a given email represented by x. If
we think the email is “spam,” then §(x) = 0. A correct decision matches the (true) state.
This can happen in two cases:

1. The email is spam, and the decision function predicts y = §(x) = 0
2. The email is good, and the decision function predicts y = §(x) = 1

An incorrect decision also has two cases:
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1. The email is spam, but the decision function predicts it as good: 0 = y # §(x)
2. The email is good, but the decision function predicts it as spam: 1 =y # §(x)

1
0

Once we have a decision function, we want to evaluate how well it performs. To this
end, we want to assign a “loss” to each pair (y,3) containing the true state and the
decision. If the values in the pair match, we will incur no loss. If the values in the pair
don't match, we have an incorrect decision and incur a (positive) loss. A loss function,
L, takes such a pair and returns a (non-negative) real number. As desired, if y = 3§,
L(y,d) =0, and if y 5, then L(y, §) > 0. In the email classification example, a common
loss function is the zero-one (0-1) loss defined as follows:

0,y=2%

Mm&Z{ly#é

For our example, both the state (y) a well as the decision (§) can each take on a value
of 0 (spam) or 1 (good). The zero-one loss function can be computed for every possible
pair:

L(0,0) = L(1,1) = 0 and L(0,1) = L(1,0) = 1

It is sometimes useful to summarize these values in a loss matrix:

The Zero-One Loss Matrix for Binary Classification

y=0 y=1

The loss matrix is the analogous object of a confusion matrix, which is used for classifi-
cation problems. Each cell in this matrix has the value of the loss incurred by the value
of the chosen decision function (rows) against the true state (columns). When these
match, the loss is zero. When they don't, the loss is positive.

In this loss function, we are assuming that classifying an email as spam when it is good
is equally as bad as classifying an email as good when it is actually spam. This may or
may not be desirable; perhaps classifying a good email as spam' may be more costly
than the inverse. Perhaps you were expecting an email that goes to the spam folder,
and you spend more time looking for it. The inverse is annoying, but you may as well
just delete it, and it doesn't take up too much time. To model such an unbalanced
(weighted) loss, consider the following loss function which assigns ten times more
weight to classifying a good email as spam versus vice versa:
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Loss function

This function meas-
ures the quality of a
decision against the
true state. It is a
non-negative func-
tion. Since it is
based on a random
observation, the loss
function is a random
variable.
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0, y=3%
L(y,0) =41, O0=y#3=1
10, 1=y#8§=0

The corresponding loss matrix is given by

A Weighted Loss Matrix for Binary Classification

y=0 y=1

Recall that in our setup, x is an email (observation). Since we are building our decision
function for any email that may come in, x is a realization of a random process (varia-
ble) X. As such, this randomness makes the decision function § random as well, albeit,
it must have some pattern (otherwise we would just be guessing randomly). This ran-
domness further affects the loss function. Indeed, writing the loss function explicitly,
L(y, 8(X)) makes it clear that it is a random variable. As such, we cannot evaluate the
loss function, L, for all inputs X. Therefore, we can quantify the “goodness” of a deci-
sion function by analyzing the expected value of the loss function: E[L(y, 8(X)]. This

Risk function expected value is exactly the definition of the risk function. In other words, given a loss

This is the expected function, L, a decision function §, and a random variable X whose values we will
loss for a given loss observe, the risk function is given by (Jiao et al,, 2013)
function and a given

decision function. R(y;8,L) = E[L(y, §(X))]

Finally, since the expectation absorbs the randomness from X, the risk function is a
deterministic function of the state, y. If X has a discrete distribution, then

R(y;L,8) = > Lly, 8(x))P(X = x)

If X has a continuous distribution, then
RiyiLd) = [, L8600

where f is the probability density function (PDF) of X. You don't have to worry too much
about this (possibly multi-dimensional) integral. We will not concern ourselves with
evaluating such quantities in this unit. Instead, our focus will be in understanding how
the risk function is defined, quantified, and in the next section, some ways it is opti-
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mized. In summary, given a loss function and the distribution of the observations for
which we want to predict their state, we quantify the quality of our decision function by
the risk function.

We will now consider a more familiar example and explore how the key concepts in this
section are applied. Suppose that X follows a Gaussian distribution N (p,1) with
unknown mean p and unit standard deviation o = 1. We assume that our observation
takes the form of n independent observations from this distribution: x = (xy, ..., x,)
from X = (Xy, ..., X,) iid from N(p,1). (Recall that iid stands for “independently and
identically distributed.) In this case, the true state is the true mean, p. One obvious
way of estimating this mean via a random sample is to use the sample mean. For the
observation, we write x = %Z?: 1x; and for the random sample we write
X:%Z?ZI}Q In other words, one option for the decision function is the sample
mean. §(x) = x for a specific observation, and §(X) = X for the random sample. A loss
function inspired by ordinary least squares is just the square difference between the
true mean and the decision: L(M, 5) = (u—38)% When we are calculating the loss for a
specific observation x, the quantity L(Hﬁs) = (n— 5(x))* is a number. But when we con-
sider the loss of a random sample, the quantity L(u, 63 — (u—8(X))%is a random varia-
ble.

The former version is quite straightforward. Suppose we observe x = (1, 3,3,2,1) (here
n =5). Then 6(x) =X = W = 2. If the true state is p = 1.5, then the loss is
L(1.5,2)=(1.5— 2)2 — (.25 For the random variable L, let's explore the randomness
using a simulation. We fix the sample size to n = 30 and assume that the true state is
p=1.5. As such, we generate 1000 random observations (each having 30 numbers)
from N (1.5,1). Next, for each observation, we compute the decision, §, which is just
the sample mean. At this point, we have 1000 sample means. Next, for each sample
mean, we compute the loss just as we did for the (small) sample at the beginning of
this paragraph. At this point, we have 1000 loss values. A histogram of these loss values
is shown in the figure below. Additionally, we indicate the sample mean loss, an esti-
mate of the value of the risk function R(1. 5, 8), with a red vertical line.
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Squared-Loss for a Simulated Example (Histogram)

Density
20.0
1257
15.0;
12.51
10.0
7.57
5.0
2.51
0.0

0.00 0.05 0.10 0.15 020 025 030 035

Loss

—— Mean loss (risk) = 0.033

The value 0.033 is an estimate for the risk value at the state p=1.5. We can repeat
this experiment for many states and plot the risk as a function of the state. The figure
below shows the risk function for various values of . This is the primary way in which
the risk function must be explored, that is, as a function of the state.
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Estimates of the Risk Function for the Squared-Loss

and Sample Mean Decision Function Using Simulations

0.04

0.03 1 W

Risk 0.02

0.01 -

0.00

-2.0 -15 -1.0 -05 0.0 0.5 1.0

=
w
=
o

I

* R(1.5) = 0.033

When the decision § doesn't match the the true mean, , it is because either our esti-
mate underestimates the mean, § < p or because it overestimates it, § > p. In certain
situations, one of these may be worse than the other. Similar to the weighted loss we
discussed for the email classification problem, we can define a loss function which
models these two scenarios differently. Suppose that underestimating the mean is 100
times worse than overestimating it by the same amount. The loss function, which enco-
des this imbalance, can be defined as follows:

100(p —8)%, p =8
L(p, ) = )

Using this loss function, together with the decision function as before (sample mean),
the risk function can be estimated via simulation. We perform this simulation as before
and summarize the result in the figure below.
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Estimates of the Risk Function for the Weighted Squared-Loss

and Sample Mean Decision Function Using Simulations

0.25-

0.20
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As you can see, the risk function for the weighted squared-loss have much higher val-
ues than those of the (ordinary) squared-loss. This suggests that we might want to
choose a decision function which overestimates the mean. As such, we might choose
8(x) = x + ¢ for some positive value c. The figure below shows similar simulations for
various values of c.

The horizontal axis has the true mean of the Gaussian distribution, and the vertical axis
has the risk values (expected losses). Each point in the plot represents an observed
sample and its associated risk. The different colors represent different decision func-
tions, parametrized by c.
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Estimates of the Risk Function for the Weighted Squared-Loss

and Biased Mean Decision Function for Various Biases Using Simulations
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As you can see, some hiased estimators (¢ > 0) perform better than the unbiased esti-
mator (c = 0). Among the ones we have tried, ¢ = 0.2 seems to be the best. Also, too
much bias (c = 0.6) actually does worse than the unbiased estimator.

For the mean estimation problem for a Gaussian distribution with unknown standard
deviation, we have seen how the choice of the loss function dictates the use of one
decision function over another. Before wrapping up this section, let's consider one last
loss function. Sometimes, the loss incurred in making a decision that is different than
the true state also depends on the magnitude of the true state. Here is an example loss
function which models such a case:

(p—3)
p? 1

L, 8) =

In such a loss function, we are assuming that the loss incurred for a difference of say
n— & =1is larger if u is small (in absolute-value) than if p is large (in absolute value).
Here are some numbers for illustration. Suppose the true mean is u = 1 and our deci-
sion is §=1.5 that is, it is off by 0.5 Then, the loss will be
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2
L(1,1.5) = (1;—15) = 0.125. Now suppose the true state is p = 10, and we are off by 0.5,
i.e., our decidionis § = 10.5. Then, the loss will be 1(10,10.5) = 10=105" 5 003. As
before, let's explore the risk function using a simulation. The figut¢ Bélow shows the

results.

On the horizontal axis, we have the values of the true-state, the true mean of the Gaus-
sian distribution. On the vertical axis, we have the risk values, i.e., the expected loss.
Each point in the plot represents one observed sample. As you can see, higher risk is
associated with smaller (absolute) values of the mean.

Estimates of the Risk Function for the Squared-Loss Weighted by Magnitude

of the Mean and the Sample Mean as the Decision Function Using Simulations

0.04
0.03 - . .
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The risk functions prior to this appeared to be more or less constant as functions of
the mean. This risk function, on the other hand, is curved. Finally, we can combine the
ideas of penalizing underestimates and overestimates differently together with the
magnitude of the mean in our loss function:

100(p — 8)°
2 b
po+1

L(u76)=( 57

T bz
W1

As before, motivated by the loss function, we prefer to overestimate than underesti-
mate and might consider a decision function which is a (possibly) biased estimate of
the mean: §(x) =X+ ¢, ¢ > 0. Once again, we will use simulations to explore the risk
functions for various biases, c.
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This figure is set up as in the previous figure, except that it now contains the estimates
of risk (vertical axis) values (expected losses) for various true states (horizontal axis)
for different decision functions. The points corresponding to different decision func-
tions are colored differently. As before, each point represents one observed sample.

Estimates of the Risk Function for the Squared-Loss Weighted by Direction and

Magnitude and Biased Mean Decision Function for Various Biases Using Simulations
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The core elements of statistical decision theory are as follows:

- the quantity we want to identify, i.e,, the state § among all possible states ©

« X arandom variable corresponding to the information we will observe and x the
observed value of this random variable

« aset of decision functions, § € A where each decision function § assigns a decision
§(X) or §(x) which takes on values in the state space ©

+ aloss function L, which evaluates the quality of a decision function (a random vari-
able)

« arisk function, which reduces the loss function to a single number by computing its
expected value

Let's consider each of these elements from the last example of this section, i.e, the
estimation of the unknown mean of a Gaussian distribution. The state space
©=(—o00,00), all real numbers. The true state is some number
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f=pe(— 0o, co). Arandom observation X = (Xy, Xy, ..., X,,) is a random sample of
size n, and the observed values were denoted by x = (xy,x9, ...,x,). Next, we consider
the sample mean estimator as a possible decision function: §(X) = X. An example of a
loss function we considered was the the squared-loss: L(M 5) = (p—3(X))? = (n _X)Q.
Note that this is a random variable. Finally, the risk function, R is the expected loss.

5.2 Maximum Likelihood, Minimax, and Bayes

Maximum likelihood, minimax, and Bayes § function for a given loss function L. How-
ever, as we will see, this process is not straightforward and there are a few different
approaches. We will start with some basic examples and give a summary for the gen-
eral case.

Suppose that we want to estimate the mean of a Gaussian distribution N(p, 1). In other
words, we have a Gaussian distribution with unknown mean p and known standard
deviation ¢ = 1. To simplify the matter, say we only consider a sample with one num-
ber, X~V (u, 1) with its observed value denoted by x. Also, we will use the standard
squared-loss  function  L(p,8) = (u—25 2. Consider the two-decision function
5;(X) =X (8;(x) =x) and (X)) =2 (85(x)=2)). The risk functions are
R, 81) = E|(n—X)?| = Var[X] = 1 and R, 5o) = E[(n—2)"] = [ — 2)2- To compare
these two decision functions, we compare their Corresponding risk functions. We like to
use the decision function that has a lower risk. However, the answer depends on the
true value of p. If 1 < p < 3, then the d, is a better decision function because it has
lower risk. But if w < 1 or p > 3, then 8, is a better decision function because its risk is
lower. Finally, if w =1 or u = 3 the two decision functions have the same risk, so we can
choose either one. The figure below shows a graph of the two risk functions.

On the horizontal axis, we plot the values of the true state, i.e, the true mean of the
Gaussian distribution. On the vertical axis, we plot the risk, the expected loss. For
example, when the true mean is zero, the expected loss (risk) for the first decision func-
tion, 84, is 1 and the expected loss of the second decision function, 8y, is about 5.
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Risk Functions for Two Decision Functions: Estimating Mean

Based on One Observation from a Gaussian Distribution

— R(p,01)
' - R(p,02)

As you can see, neither risk function is entirely below the other one. In other words,
neither risk function is uniformly (for all values of p) lower. To help clarify things, we
need a single number for the risk function corresponding to a certain decision func-
tion. One option is the maximum risk (Kasy, 2014): R(p,8) = max, R(p,d). In our case,
R(p,8;) =1 and R(p, 89) = oco. Therefore, based on this (one-number) summary of the
risk function, we will choose §; as the better decision function.

Another way to get a single number for the risk function of a decision function is to
compute the Bayes risk. As you may remember, a Bayesian formulation for estimating
an unknown parameter (in this case p), is to choose a prior distribution for this param-
eter. Let's say we choose the prior p~prior(p). Then, the Bayes risk is defined by (Kasy,
2014)

Rp(8) = Epyion(y) R, 8)] = JZOOR(M,?’))prior(u)du

If the distribution of the prior is discrete, we would replace the integral with a sum. In
other words, the Bayes risk treats the unknown parameter as a random variable, gives
it a prior distribution, then computes the expected risk using this prior distribution. For
our example above, let's put a standard Gaussian prior: p~prior = N(0,1). We are now
ready to compute the Bayes risk for each of the two estimators:
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Maximum risk

This is the maximum
of the risk function
over all possible val-
ues of the true state.

Bayes risk

For this expected
risk, the true state is
treated as a random
variable with a given
prior distribution.
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prlor(p)[R(Hv 61)] E[1] =

=E
RB(BQ) [Eprlor( )[R(u’ 62)] [E[(M 2) ]
E[p?| —4E[p] + E4] =1—-4-0+4=5

Now, as you can see, the Bayes risk is lower for 81, and we would choose this as our
decision function of choice.

Let's consider another example. We want to estimate the (unknown) probability of suc-
cess from a Bernoulli distribution: Bernoulli(p). Recall that a variable, X, follows the
Bernoulli distribution, if it can take on exactly two values: 0 with probability 1-p and 1
with probability p. We use an observation containing n independent and identically dis-
tribution  variables: X = (Xy,...,X, )"/ Bernoulli(p). ~ The  realized  values
are x = (xq, ...,x,). We will apply the two decision functions given below adapted from
an example found in Wasserman (2004).

By (X)= X = =0
B, (X)= Zf:ﬁ

Let's compute the risk functions for each of these decision functions so we can start
comparing them:

R(p,8,) = [E[(X - P)Q] = VarX = p(lT—p)

SiX;+yn/4 ?
n+ﬁ -b

1

a1+ )

R(p.d;) =E

Let's suppose we are using an observation containing n=400 numbers. The figure below
shows the graph of two risk functions.

The horizontal axis contains the true values of the true state (the probability p of suc-
cess of a Bernoulli distribution). The vertical axis contains the risk (expected loss) cor-
responding to each of those true states. For example, when the true state, p, is small or
large (away from 0.5), we see that the risk associated with the first decision function, &,
is smaller. But, for value of p close to 0.5, the second decision function, 35 has lower
risk.
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Risk Functions for Two Decision Functions: Estimating Probability

Parameter of Bernoulli Distribution Based on a Sample of Ten Numbers

0.0006

0.0005 1
0.0004 1
0.0003 1
0.0002 -
0.0001 1
0.0000 1

e R(paél)
— R(p,&2)

Notice that neither one is uniformly below the other. Therefore, considering all the val-
ues, we cannot say which one is better. Following the guidance of the previous exam-
ple, we can calculate a one-number summary of each risk function and choose the one
with the lower value. First, let's compute the maximum risk for each of the two decision
functions:

R e p) L 1

R(p,ﬁl)-—lnsx — =77 = Teo0 = 0-000625

= 1 1

R(p, 89) = max ~ 0.000567

1 = =
b a(1+vh)  4(14vm) 41 +y10)°

Therefore, the better decision function (the one with a lower maximum risk) is 8.

Another way to compute a one-number summary is to calculate the Bayes risk. For this,
we need to choose a prior distribution for p. Let's choose prior(p) = Beta(p; 2, 2), a Beta
distribution. Next, treating p as a random variable (following this prior distribution), we
compute the expected value of the risk functions under this prior:
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Minimax risk

For each decision
function, we com-
pute the worst (max)
risk across all values
of the true state.
Then, among all
these maximum
risks, we take the
smallest one across
the different deci-
sion functions.
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1-— 11
Rp(8)) = [E[p< - p)] = === 5000 = 0-0005
Rp(by) = F——5| = —— = L ~0.000567
A(1++vn)7|  4(1++n)”  4(1++400)

Thus, the first decision function has (marginally) better Bayes risk.

We are finally ready to summarize our observations. In the two examples considered
above, we essentially had only two decision functions the were competing. Now sup-
pose that A contains all the possible decision functions to choose from. So each deci-
sion function § which is consider is an element of A. Next, denote the parameter we
are estimating (the true state) as 6. In the first example we had 6 = p and in the second
example, we have § = p. Next, consider the collection of all possible values of § as ©. In
the case of an unknown mean for a Gaussian, ® = ( — oo, oo ) and in the case of the
unknown probability parameter p for the Bernoulli, © = [0, 1]. For a fixed loss function,
we know that the risk is based on the true value of § and the decision function &:

R =R(6,3)

When we have only two risk functions, we found the maximum of the risk function by
varying the true parameter. Then, among all the maximum risk values, we chose the
smaller one. If we want to do this for all § € A, then we would have the minimax risk
defined by

Rijinimax = min max R(}L, 6)
deA 0€O

You can probably tell why this is called minimax! Once again, in our examples, we com-
puted the maximum risks for each of the decision functions: R(3;) = ?SSR(G»BQ for
i=1,2. Then we chose the smaller of the two risks: BmlrlAR %) where A = {5,,3,}.
Another way to look at this is the “best (min) worst (max) risk” Finally, the decision
function which attains this minimax value is called the minimax decision function (esti-

mator):

B minimax = ar% c min anéDéR(e, §).

In other words,

E(6minimax) = maXR(ea 6minimax) = min maXR(M? 6)
0O deA 0O
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The Bayes risk was defined as the expected value of the risk with respect to a prior dis-
tribution of the unknown parameter. For our examples, we computed the Bayes risk for
each of the two decision functions and then chose the one with the lower Bayes risk.
When we have many decision functions in A, we essentially do the same thing. We
want

RBayes = Bmgi%RB@) = Sngg[Eprior(G)[Rw; d)]

The decision function that attains this minimum is called the Bayes decision function
(or Bayes estimator). If we denote this Bayes decision function by dpayes, then

SBayes = arg minR(3) .
deA

In other words,

R@Bayes) = énél&RB(é) .

5.3 Admissibility and Stein's Paradox

Given two decision functions (estimators), d; and 8, for an unknown parameter, 6, we
say that §; is admissible over &5 if the risk function associated with 8; is uniformly less
than (or equal to) the risk function associated with d5. This means that
R(0,8;) <R(0,3,) for every possible value of §. We revisit the graph of the risk func-
tions of two decision functions from the last section (last figure of section 5.2 above).
Notice that neither of the risk functions have their plots entirely below the other. The
risk function corresponding to 9§y is lower than that of 8y only for values of § = p far
from p = 1/2. Next, consider the various risk functions in the last figure of section 5.1.

It appears that the decision function corresponding to ¢ = 0.2 is below every other risk
function. Therefore, 8, o(X) =X +0.2 is said to be admissible to every other risk
function. Its graph lies entirely below every other risk function. In other words, the risk
associated with this decision function is lower than other risk functions for every value
of the parameter 6 = .. One of the nice properties of Bayes estimators is the following
fact: given a prior distribution for the unknown parameter 9, if § is a uniquely deter-
mined Bayes estimator, then it is admissible. In other words, a unique Bayes estimator
will have its risk function not larger than any other risk function (corresponding to any
other decision function) for every value of the parameter 6! We will not indulge in the
proof of this fact, but it is an important fact to remember.

Suppose we have three unrelated quantities, which are known to follow (independent)
Gaussian distributions with known (unit) variance but unknown means. In other words,
we have X;~N (j;, 1) for i = 1,2,3 and X;, Xy, X3 are independent. We observe one real-
ization from each Gaussian and want to use this realization to estimate the three
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unknown means. The most natural estimate is the value of the observation itself. The
natural decision function is §(X;, Xy, X3) = (X4, Xo, X3). In other words, our best guess
for the (unknown) mean, py, for the first Gaussian is X; and similarly for the other two.
To evaluate this decision function, let's use the standard squared loss:

L((Mp oo 113),8) = (1 — X1 + (1 — Xo) + (g — X3)?

The associated risk function, the expectation of this loss with respect to the joint distri-
bution of (X, Xy, X3), can be computed term-by-term because of independence:

R((jy, o, pig), ) = EL = Var[X;] + Var[Xy| + Var[Xs] =1+ 1+1=3

Stein) decision function given by & (X, Xy, X3) = (X4, X9,X3), where

1
1 R

2
EQ - X?l+ x2 1 X2 In other words, this decision function estinfates the first mean by

One would think that this is a pretty good decision functioE. Nov\/)consider the (James-
1-— % X; and the other means similarly. It turns out that the risk associated with this
ecisfon function is

, 1
R((Mh Mo, Ms)a5 ) =3- [E?

Note that % >0 with probability 1. Therefore, [ELSLQJ >0 and so R(p,d’) < 3. Finally,

since this is true for all values of p = (jug, o, 13), W have that the James-Stein decision
function (estimate) for the three means is in fact admissible! The result is quite para-
doxical for the following reason. To estimate py, our decision function uses the estima-
tor

1

X
X7+ X3+ X3

which depends on X, and X3. However, X; is independent of X, and X3! In a concrete
example, y; is is the average price of tea in China, poy is the average temperature on the
surface of Mars, and pg is the average kilograms of food consumed by a polar bear.
What Stein's paradox implies is this: if we want to simultaneously estimate these three
averages, then we must, for example, use the information about the temperatures on
Mars and the consumption of polar bears to inform our estimate about the average
price of tea in China! Doing so reduces the risk (the expected squared-loss). The result-
ing estimate will perform better, on average, then a decision function (estimate) whose
estimates for the three means each only depend on their respective values. An intuitive
way to think about why this is the case is to consider that although the three quantities
have nothing to do with one another, if we end up with a bad estimate for one of the
means, we want to make up for it in the other variables. Take a look at the loss func-
tion again. For the James-Stein decision function, the associated loss is

2
+

2
+

2

, 1 1 1
L((juy, po, pig), 8') = [m - (1 - §)X1 Ho — (1 - ?)XQ g — (1 - ?)XS
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Therefore, each squared term depends on the information from all three variables. In a
way, as mentioned above, we simultaneously want a good estimate for all three
means.

Summary

This unit serves as general introduction to the core concepts in statistical decision
theory. The main elements of statistical decision theory were introduced in section
5.1. The key takeaways from this section wer the relevant definitions of the state
space, decision functions, loss functions, and finally the risk function. These are the
elements with respect to which problems of statistical decision theory are framed,
analyzed, and evaluated.

Taking a risk function and consolidating it to a single number is not a very straight-
forward task. However, it is an ideal towards which we strive in order to choose the
best decision function for a particular problem. To this end, we discussed minimax
and Bayes risks and their associated decision functions.

Finally, we discussed the notion of admissibility. This notion is a quality of a deci-
sion function that is desirable. The concept of admissibility was discussed with a
few examples. Stein's paradox was the final topic of section 5.3. We gave an exam-
ple of a James-Stein estimator (decision function) that was admissible.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!
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Congratulations!

You have now completed the course. After you have completed the knowledge tests on
the learning platform, please carry out the evaluation for this course. You will then be
eligible to complete your final assessment. Good luck!
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