1. The Experimental Ideal Hospitals' influence on health ...

 \Rightarrow Do hospitals improve people's health?

 National Health Interview Survey about how healthy people feel (1 excellent health; 5 poor health) 2

Result suggests that hospitals make people sicker

Group	Sample Size	Mean health status	Std. Error
Hospital	7774	2.79	0.014
No Hospital	90049	2.07	0.003

 \Rightarrow Explanation: People who go to the hospital are sicker and people who never went think they are healthier in the first place

Describe problem more analytically

Dummy variable:

$$D_i = \begin{cases} 0 & \text{if not treated in hospital} \\ 1 & \text{if treated in hospital} \end{cases}$$

► Health status: *y_i*

Observed Outcome:

$$y_i = \begin{cases} y_{1i} & \text{if } D_i = 1\\ y_{0i} & \text{if } D_i = 0\\ = y_{0i} + (y_{1i} - y_{0i})D_i \end{cases}$$

Potential outcomes

 $y_{i} = \begin{cases} y_{1i} & \text{if individual has been to the hospital} \\ y_{0i} & \text{if individual has not been to the hospital} \\ = y_{0i} + (y_{1i} - y_{0i})D_{i} \end{cases}$ (1)

► The causal effect of hospitalization for an individual is then:

$$y_{1i} - y_{0i}$$

Problem: We never see both potential outcomes for any one person!

1. The Experimental Ideal **Comparing conditional means**

► Difference in average health:

$$\mathbb{E}[y_i|D_i = 1] - \mathbb{E}[y_i|D_i = 0] = \mathbb{E}[y_{1i}|D_i = 1] - \mathbb{E}[y_{0i}|D_i = 1]$$

Observed difference in average health average treatment effect on the tr

$$+\underbrace{\mathbb{E}[y_{0i}|D_i=1]-\mathbb{E}[y_{0i}|D_i=0]}_{\mathbf{E}[y_{0i}|D_i=0]}$$

selection bias

 Average causal effect of hospitalization on those who were hospitalized:

$$\mathbb{E}[y_{1i}|D_i = 1] - \mathbb{E}[y_{i0}|D_i = 1] = \mathbb{E}[y_{1i} - y_{0i}|D_i],$$

where $\mathbb{E}[y_{1i}|D_i = 1]$ is the health of the hospitalized, and $\mathbb{E}[y_{0i}|D_i = 1]$ is the average health of those had they not been hospitalized (unobservable)

► Sick people are more likely to get treated; causes *selection bias*

6

▶ <u>Problem</u>: Selection bias prevents us from studying *observable* quantitity $\mathbb{E}[y_i|D_i = 1] - \mathbb{E}[y_i|D_i = 0]$

► Goal of empirical economic research: Overcome selection bias and say something about the causal effect of a variable

 Random assignment of D_i solves the selection problem because it makes D_i independent

Note that

$$\begin{split} \mathbb{E}[y_i|D_i = 1] - \mathbb{E}[y_i|D_i = 0] &= \mathbb{E}[y_{1i}|D_i = 1] - \mathbb{E}[y_{0i}|D_i = 0] \\ &= \mathbb{E}[y_{1i}|D_i = 1] - \mathbb{E}[y_{0i}|D_i = 1] \\ &= \mathbb{E}[y_{1i} - y_{0i}|D_i = 1] = \mathbb{E}[y_{1i} - y_{0i}] \end{split}$$

since under independence of y_{0i} and D_i , we have $\mathbb{E}[y_{0i}|D_i = 0] = \mathbb{E}[y_{0i}|D_i = 1].$

 \Rightarrow Selection bias is eliminated!

Education Research: Are smaller classes better?

- Many non-experimental studies find no/little link between class size and children learning
- Typical error: just comparing test outcomes without accounting for selection bias
- ► Tennessee STAR experiment: Randomized trials; implemented in 1985/86; ran for 4 years; invovled > 11,000 children
- Key question: Did the randomization successfully balance subjects' characteristics across the different treatment groups?

9

Description

a cross-section from 1985-89

number of observations : 5748

observation : individuals

country : United States

Usage

data(Star)

Format

A dataframe containing :

tmathssk total math scaled score treadssk total reading scaled score classk type of class, a factor with levels (regular,small.class,regular.with.aide) totexpk years of total teaching experience sex a factor with levels (boy,girl) freelunk qualified for free lunch ? race a factor with levels (white,black,other) schidkn school indicator variable

1. The Experimental Ideal —

Does randomization work?

		Class si	ze
	Small	Regular	Regular/Aide
1. Free lunch	0.473	0.475	0.499
2. White/Asian	0.683	0.677	0.661
3. Score percentiles	0.744	0.733	0.733
4. Girls	0.485	0.486	0.487

• Differences are small \Rightarrow Randomization seems to work!

Regression Analysis of Experiments

► Assume that treatment effect is the same for everyone:

$$y_{1i} - y_{0i} = \rho$$

▶ Then, (1) becomes

$$y_i = \underbrace{\alpha}_{\mathbb{E}[y_{0i}]} + \underbrace{\rho}_{(y_{1i} - y_{0i})} D_i + \underbrace{\eta_i}_{y_{0i} - \mathbb{E}[y_{0i}]},$$

where η_i is the random part of y_{0i} .

- 1. The Experimental Ideal
 - Conditional expectations with treatment switched on and off are

$$\mathbb{E}[y_i|D_i = 1] = \alpha + \rho + \mathbb{E}[\eta_i|D_i = 1]$$
$$\mathbb{E}[y_i|D_i = 0] = \alpha + \mathbb{E}[\eta_i|D_i = 0]$$

so that

$$\mathbb{E}[y_i|D_1 = 1] - \mathbb{E}[y_i|D_i = 0] = \rho + \underbrace{\mathbb{E}[\eta_i|D_i = 1] - \mathbb{E}[\eta_i|D_i = 0]}_{\text{selection bias}},$$

where ρ is the treatment effect.

- Selection bias corresponds to correlation between error η_i and regressor D_i.
- Note that

 $\mathbb{E}[\eta_i | D_i = 1] - \mathbb{E}[\eta_i | D_i = 0] = \mathbb{E}[y_{0i} | D_i = 1] - \mathbb{E}[y_{0i} | D_i = 0].$

- Hence, correlation reflects the difference in no-treatment potential outcomes between those who get treated and those who don't.
- Under random assignment, the selection bias is not present. Regressing y_i on D_i gives the causal effect of interest ρ.

1. The Experimental Ideal —

	Depende	nt Variable: Scor	e percentile
	(1)	(2)	(3)
small	0.011***	0.011***	0.011***
	(0.002)	(0.002)	(0.002)
black		-0.024***	-0.009***
		(0.002)	(0.002)
girl		0.012***	0.011***
-		(0.002)	(0.001)
freelunch			-0.027***
			(0.002)
totexpk			0.001***
·			(0.0001)
Constant	0.733***	0.735***	0.735***
	(0.001)	(0.001)	(0.002)
Observations	5,748	5,748	5,748
R ²	0.007	0.051	0.102

1. The Experimental Ideal -Controls

Covariates play two roles here:

 Assignment to classes of different sizes was random within schools, but not across schools (different school types may have different average class sizes)

 \Rightarrow Need to include school-specific fixed effects

Control for student characteristics

► Controls x_i uncorrelated with treatment $D_i \Rightarrow$ no affect on ρ , but may generate more precise estimates of causal effect

Yields the model

$$y_i = \alpha + \rho D_i + \mathbf{x}'_i \gamma + \eta_i$$

2. Regression Fundamentals | 2.1 Conditional Expectations - Outline I

1. The Experimental Ideal

2. Regression Fundamentals 2.1 Conditional Expectations

- 2.2 Ordinary Least Squares
- 2.3 Asymptotic OLS Inference
- 2.4 Hypothesis Testing

3. Applying Regression

- 3.1 Marginal Effects
- 3.2 Dummies & Saturated Models
- 3.3 Causality and CIA
- 3.4 Difference-in-Differences
- 3.5 Clustered Standard Errors

- 2. Regression Fundamentals | 2.1 Conditional Expectations ------
 - ► We define the (n × 1) vector of dependent y and the (n × k) matrix of independent variables X as follows:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{n \times 1},$$
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \\ \vdots \\ \mathbf{x}'_n \end{pmatrix}_{n \times k} = \begin{pmatrix} x_{11} & x_{12} & \vdots & x_{1k} \\ x_{21} & x_{22} & \vdots & x_{2k} \\ \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \vdots & x_{nk} \end{pmatrix}_{n \times k}.$$

2. Regression Fundamentals | 2.1 Conditional Expectations — Conditional Expectation Function

• Definition of the CEF for continuous y_i and conditional density $f_{y_i}(\cdot | \mathbf{x}_i = x)$

$$\mathbb{E}[y_i|\boldsymbol{x}_i=x] = \int tf_{y_i}(t|\boldsymbol{x}_i=x)dt$$

► Definition of the CEF for discrete y_i and conditional density $f_{y_i}(\cdot | \mathbf{x}_i = x)$

$$\mathbb{E}[y_i|\mathbf{x}_i=x] = \sum_t tf_{y_i}(t|\mathbf{x}_i=x)$$

CEF is random because x_i is random and the CEF is a function of x_i!

2. Regression Fundamentals | 2.1 Conditional Expectations — CEF-Decomposition Property

An implication of the law of iterated expectations is the possibility to split up a random variable in two pieces:

$$y_i = \mathbb{E}[y_i | \mathbf{x}_i] + \varepsilon_i$$

 \triangleright (*i*) ε_i is "mean-independent" of \mathbf{x}_i , i.e. $\mathbb{E}[\varepsilon_i | \mathbf{x}_i] = 0$

 \triangleright (*ii*) ε_i is uncorrelated with any function of x_i

▶ y_i can be decomposed into a piece that is perfectly correlated with x_i (the CEF) and a piece, which is orthogonal to any function of x_i CEF-Prediction Property: Let m(x_i) be any function of x_i.
 The CEF solves

$$\mathbb{E}[y_i | \mathbf{x}_i] = \underset{m(\mathbf{x}_i)}{\operatorname{argmin}} \mathbb{E}[(y_i - m(\mathbf{x}_i))^2],$$

so it is the minimum mean squared error (MMSE) predictor of y_i given x_i .

ANOVA Theorem: The unconditional variance of y_i can be split up as follows:

$$\mathbb{V}[y_i] = \mathbb{V}(\mathbb{E}[y_i|\boldsymbol{x}_i]) + \mathbb{E}[\mathbb{V}(y_i|\boldsymbol{x}_i)].$$

2. Regression Fundamentals | 2.1 Conditional Expectations – **CEF and linear regression**

- Population regression problem: Least squares problem formulated in terms of non-random features of the joint distribution of dependent and independent variables.
- A population regression coefficient is the solution to a population least squares problem.
- Let the $(k \times 1)$ regression coefficient vector β be defined as $\beta = \underset{\tilde{\beta}}{\operatorname{argmin}} \mathbb{E}[(y_i - \mathbf{x}'_i \tilde{\beta})^2]$
- First order condition:

$$\mathbb{E}[oldsymbol{x}_i(y_i - oldsymbol{x}_i' ilde{oldsymbol{eta}})] = 0$$

yielding

$$\boldsymbol{\beta} = \mathbb{E}[\boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \mathbb{E}[\boldsymbol{x}_i' \boldsymbol{y}_i]. \tag{2}$$

2. Regression Fundamentals | 2.1 Conditional Expectations

► By construction:

$$\mathbb{E}[\mathbf{x}_i(y_i - \mathbf{x}'_i\beta)] = \mathbf{0},$$

where

$$y_i - \mathbf{x}'_i \boldsymbol{\beta} = \varepsilon_i.$$

defines the population residual, which is uncorrelated with the regressors x_i .

2. Regression Fundamentals | 2.1 Conditional Expectations — Anatomy of multivariate regression

In a multivariate regression, i.e., with more than one (non-constant) regressor, the slope coefficient for the k-th regressor is given by coefficient

$$\beta_k = \frac{\mathbb{C}\mathsf{ov}\left[y_i, \tilde{x}_{ki}\right]}{\mathbb{V}[\tilde{x}_{ki}]}$$

where \tilde{x}_{ki} is the residual from a population regression of x_{ki} on all other covariates.

▶ Hence, $\mathbb{E}[\mathbf{x}_i \mathbf{x}'_i]^{-1} \mathbb{E}[\mathbf{x}'_i y_i]$ is the $(k \times 1)$ vector with k-th element given by \mathbb{C} ov $[y_i, \tilde{x}_{ki}]/\mathbb{V}[\tilde{x}_{ki}]$.

2. Regression Fundamentals | 2.1 Conditional Expectations — Justification for regression

Theorem (Linear CEF). Suppose the CEF is linear. Then, the population regression function is it, i.e., $\mathbb{E}[y_i|\mathbf{x}_i] = \mathbf{x}'_i \boldsymbol{\beta}$ with $\boldsymbol{\beta}$ given by (2).

24

But when is the CEF linear?

- ► If the vector (y, x'_i) is multivariate normally distributed (problem: variables are often discrete)
- If the regression models are saturated, i.e., there is a separate paramter for every possible combination of values the regressors can take

Theorem (Best Linear Predictor). The function $\mathbf{x}'_i \boldsymbol{\beta}$ is the best linear predictor of \mathbf{y} given \mathbf{x}_i in a MSE sense. Hence, $\mathbb{E}[\mathbf{y}_i | \mathbf{x}_i]$ is the best MMSE predictor of y_i given \mathbf{x}_i in the class of all functions of \mathbf{x}_i .

Theorem (Regression-CEF Theorem). The function $\mathbf{x}'_i \boldsymbol{\beta}$ provides the minimal MSE linear approximation to $\mathbb{E}[y_i | \mathbf{x}_i]$, that is

$$eta = \mathop{\mathrm{argmin}}_{ ilde{eta}} \mathbb{E}[(\mathbb{E}[y_i | oldsymbol{x}_i] - oldsymbol{x}_i' ilde{eta})^2]$$

- While the CEF is the best unrestricted predictor (in a MSE sense) of the dependent variable, the regression provides the best <u>linear</u> predictor for it.
- ► If we want to approximate E[y_i|x_i] (as opposed to predicting y_i), regression provides the best (in a MSE sense) <u>linear</u> approximation to it.

2. Regression Fundamentals | 2.1 Conditional Expectations — How to estimate β ?

▶ The population regression coefficient

$$\boldsymbol{\beta} = \mathbb{E}[\boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \mathbb{E}[\boldsymbol{x}_i' y_i].$$

is estimated by replacing the population moments $\mathbb{E}[.]$ by their corresponding sample means:

$$\hat{\boldsymbol{\beta}} = \hat{\mathbb{E}}[\boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \hat{\mathbb{E}}[\boldsymbol{x}_i' y_i] \\ = \left(\frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i' y_i \\ = (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y}$$

▶ Ordinary Least Squares (OLS) estimator

Duncan (carData)

R Documentation

28

Duncan's Occupational Prestige Data

Description

The Duncan data frame has 45 rows and 4 columns. Data on the prestige and other characteristics of 45 U. S. occupations in 1950.

Usage

Duncan

Format

This data frame contains the following columns:

type

Type of occupation. A factor with the following levels: prof, professional and managerial; we, white-collar; be, blue-collar.

income

Percentage of occupational incumbents in the 1950 US Census who earned \$3,500 or more per year (about \$36,000 in 2017 US dollars).

education

Percentage of occupational incumbents in 1950 who were high school graduates (which, were we cynical, we would say is roughly equivalent to a PhD in 2017)

prestige

Percentage of respondents in a social survey who rated the occupation as "good" or better in prestige

Source

Duncan, O. D. (1961) A socioeconomic index for all occupations. In Reiss, A. J., Jr. (Ed.) Occupations and Social Status. Free Press [Table VI-1].

References

Fox, J. (2016) Applied Regression Analysis and Generalized Linear Models, Third Edition. Sage.

Fox, J. and Weisberg, S. (2019) An R Companion to Applied Regression, Third Edition, Sage.

[Package carData version 3.0-3 Index]

2. Regression Fundamentals | 2.1 Conditional Expectations

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
income	45	41.867	24.435	7	21	64	81
education	45	52.556	29.761	7	26	84	100
prestige	45	47.689	31.510	3	16	81	97
resmod2	45	-0.000	20.513	-59.088	-12.557	13.795	49.858

2. Regression Fundamentals | 2.1 Conditional Expectations

	Prestige
	prestige
education	0.546***
	(0.098)
income	0.599***
	(0.120)
Constant	-6.065
	(4.272)
Observations	45
R ²	0.828
Adjusted R ²	0.820
Residual Std. Error	13.369 (df = 42)
F Statistic	101.216^{***} (df = 2; 42)
Note:	*p<0.1; **p<0.05; ***p<0.01

2. Regression Fundamentals | 2.1 Conditional Expectations — **How to estimate** β_k **?**

▶ The population regression coefficient

$$\beta_k = \frac{\mathbb{C}\mathsf{ov}\left[y_i, \tilde{x}_{ki}\right]}{\mathbb{V}[\tilde{x}_{ki}]}$$

is estimated by

$$\hat{\beta}_k = \frac{\widehat{\mathbb{Cov}}[y_i, \tilde{x}_{ki}]}{\widehat{\mathbb{V}}[\tilde{x}_{ki}]} = \frac{\frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})(\tilde{x}_{ki} - \bar{x}_k)}{\frac{1}{n} \sum_{i=1}^n (\tilde{x}_{ki} - \bar{x}_k)^2},$$

where \tilde{x}_{ki} is the residual from a regression of x_{ki} on all other covariates.

R Partialling out income

	prestige
	prestige
residuals from regressing education on income	0.546 ^{**} (0.219)
Constant	47.689 ^{***} (4.441)
Observations	45
R ²	0.126
Adjusted R ²	0.106
Residual Std. Error	29.794 (df = 43)
F Statistic	6.214^{**} (df = 1; 43)
Note:	*p<0.1; **p<0.05; ***p<0.01

Wage	es (Ecdat)	R Documentation
Pa	nel Data of Individual Wages	
Des	cription	
a pan	el of 595 observations from 1976 to 1982	
numb	per of observations : 4165	
obsei	rvation : individuals	
count	try : United States	
Usa	ge	
data	(Nages)	
Forr	nat	
A dat	aframe containing :	
exp		
	years of full-time work experience	
wks		
	weeks worked	
bluec	ol	
	blue collar ?	
ind		
	works in a manufacturing industry ?	
south		
	resides in the south ?	
smsa		
	resides in a standard metropolitan statistical are ?	
marri	ed	
	married ?	

2. Regression Fundamentals | 2.1 Conditional Expectations

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
experience	4,165	19.854	10.966	1	11	29	51
weeks worked	4,165	46.812	5.129	5	46	50	52
industry	4,165	0.395	0.489	0	0	1	1
education	4,165	12.845	2.788	4	12	16	17
log wage	4,165	6.676	0.462	4.605	6.395	6.953	8.537

	Dependent variable:
	logarithmic Wage
years of education	0.065***
	(0.002)
Constant	5.839***
	(0.031)
Observations	4,165
R ²	0.155
Adjusted R ²	0.155
Residual Std. Error	0.424 (df = 4163)
F Statistic	764.526^{***} (df = 1; 4163)
Note:	*p<0.1; **p<0.05; ***p<0.01

Regression Fundamentals | 2.1 Conditional Expectations Regression fit vs. conditional means

- 2. Regression Fundamentals | 2.1 Conditional Expectations -
 - Iterating expectations in the formula for β yields

$$\beta = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i']^{-1} \mathbb{E}[\mathbf{x}_i y_i] = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i']^{-1} \mathbb{E}[\mathbf{x}_i \mathbb{E}[y_i | \mathbf{x}_i]].$$

- ► Hence, an implication of the regression-CEF theorem is that regression coefficients can be obtained by using E[y_i]x_i] as dependent variable instead of y_i.
- Note that

$$\mathbb{E}[(\mathbb{E}[y_i|\boldsymbol{x}_i] - \boldsymbol{x}_i'\tilde{\boldsymbol{\beta}})^2] = \sum_{u} (\mathbb{E}[y_i|\boldsymbol{x}_i = \boldsymbol{u}] - \boldsymbol{u}'\tilde{\boldsymbol{\beta}})^2 g_{\boldsymbol{x}}(\boldsymbol{u}),$$

where $g_x(u)$ is the probability mass function.

 $\Rightarrow \beta$ can be constructed from a weighted least squares regression of $\mathbb{E}[y_i|\mathbf{x}_i = \mathbf{u}]$ on \mathbf{u} , where \mathbf{u} runs over the values of \mathbf{x}_i and each observation is weighted based on the distribution of \mathbf{x}_i .

	Dependent variable:
	Means by years of education
years of education	0.057***
-	(0.006)
Constant	5.953***
	(0.071)
Observations	14
R ²	0.872
Adjusted R ²	0.862
Residual Std. Error	0.095 (df = 12)
F Statistic	81.912^{***} (df = 1; 12)
Note:	*p<0.1; **p<0.05; ***p<0.01

	Dependent variable:
	Means by years of education
years of education	0.065***
	(0.004)
Constant	5.839***
	(0.056)
Observations	14
R ²	0.951
Adjusted R ²	0.947
Residual Std. Error	0.012 (df = 12)
F Statistic	235^{***} (df = 1; 12)
Note:	*p<0.1; **p<0.05; ***p<0.01

2. Regression Fundamentals | 2.2 Ordinary Least Squares -Outline I

1. The Experimental Ideal

2. Regression Fundamentals

2.1 Conditional Expectations

2.2 Ordinary Least Squares

2.3 Asymptotic OLS Inference2.4 Hypothesis Testing

3. Applying Regression

- 3.1 Marginal Effects
- 3.2 Dummies & Saturated Models
- 3.3 Causality and CIA
- 3.4 Difference-in-Differences
- 3.5 Clustered Standard Errors

2. Regression Fundamentals | 2.2 Ordinary Least Squares – Assumptions

(A1) The model is linear in the parameters and with the conditional mean specified by $\mathbb{E}[\boldsymbol{y}|\boldsymbol{X}] = \boldsymbol{X}\boldsymbol{\beta}$.

- (A2) The regressor matrix \boldsymbol{X} is of full column rank k, i.e., $rk(\boldsymbol{X}) = k < n$ (with probability one).
- (A3) The regressors $x_i^{(j)}$, j = 1, ..., k are *strictly exogenous* with $\mathbb{E}[\varepsilon | \mathbf{X}] = \mathbf{0}$ implying $\mathbb{E}[\varepsilon_i | \mathbf{x}_1, ..., \mathbf{x}_n] = \mathbf{0}$ for all i = 1, ..., n.

2. Regression Fundamentals | 2.2 Ordinary Least Squares -

Define the conditional covariance matrix of ε as

$$\mathbb{V}[arepsilon|oldsymbol{X}] = \mathbb{E}[arepsilonarepsilon'|oldsymbol{X}] =: oldsymbol{\Psi}.$$

(A4) The error terms are assumed to be uncorrelated, i.e., $\mathbb{E}[\varepsilon_i \varepsilon_j | \mathbf{X}] = 0$ for $i \neq j$. Then, $\Psi = \mathbf{D}$ with

$$\boldsymbol{D} := diag[\sigma_1^2, \ldots, \sigma_n^2].$$

(A5) The error terms are assumed to be (conditionally) homoscedastic, i.e., they have equal variances across the sample, i.e., $\mathbb{V}[\varepsilon_i|\mathbf{X}] = \mathbb{E}[\varepsilon_i^2|\mathbf{X}] = \sigma^2$ for all i = 1, ..., n. Then, $\mathbf{D} = \sigma^2 \mathbf{I}_n$, where \mathbf{I}_n denoting an *n*-dimensional identity matrix.

2. Regression Fundamentals | 2.2 Ordinary Least Squares – Hat Matrix and Residual Maker

▶ The OLS residual vector is given by

$$oldsymbol{e} = egin{pmatrix} e_1 \ e_2 \ dots \ e_n \end{pmatrix} = oldsymbol{y} - \hat{oldsymbol{y}} = oldsymbol{y} - oldsymbol{X} \hat{eta}.$$

► Vector of fitted dependent variables:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{eta}$$

= $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
= $P\mathbf{y}$,

where $\boldsymbol{P} := \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}'$ is a projection matrix.

2. Regression Fundamentals | 2.2 Ordinary Least Squares -----

Therefore:

$$\boldsymbol{e} = \boldsymbol{y} - \boldsymbol{P} \boldsymbol{y} = (\boldsymbol{I} - \boldsymbol{P}) \boldsymbol{y} = \boldsymbol{M} \boldsymbol{y},$$

where

$$\boldsymbol{M} := \boldsymbol{I} - \boldsymbol{P} = \boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'$$

is called "residual maker" or "annihilator".

- For the matrix M it can be shown that MX = 0, M' = M, and MM = M
- ▶ Then, the relationship between e and ε is

$$\boldsymbol{e} = \boldsymbol{M}(\boldsymbol{X}\boldsymbol{eta} + \boldsymbol{arepsilon}) = \boldsymbol{M}\boldsymbol{arepsilon},$$

2. Regression Fundamentals | 2.2 Ordinary Least Squares – Numerical Properties of OLS

In terms of the residual vector, the F.O.C. is given by

$$oldsymbol{X}'oldsymbol{e} = \sum_{i=1}^n oldsymbol{x}_i e_i = oldsymbol{0}.$$

▷ That is, each column of **X** is orthogonal to e. ⇒ $\hat{y}'e = 0$

▶ If the regression equation has an intercept:

$$\sum_{i=1}^{n} x_{i1} \cdot e_i = \sum_{i=1}^{n} e_i = 0.$$

2. Regression Fundamentals | 2.2 Ordinary Least Squares -Frisch-Waugh Theorem

Assume the regression model can be written as

$$oldsymbol{y} = oldsymbol{X}_1oldsymbol{eta}_1 + oldsymbol{X}_2oldsymbol{eta}_2 + arepsilon$$

and the OLS estimator is given by $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1', \hat{\beta}_2')' = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}.$

► Theorem (Frisch-Waugh) Define $M_1 = I_N - X_1(X'_1X_1)^{-1}X'_1, \quad M_2 = I_N - X_2(X'_2X_2)^{-1}X'_2$ as the residual makers based on regressions on X_1 and X_2 . Then, $\hat{\beta}_1$ ($\hat{\beta}_2$) is obtained as the OLS estimator in a regression of M_1y (M_2y) on M_1X_2 (M_2X_1). Hence, $\hat{\beta}_1 = (X'_1M_2X_1)^{-1}(X'_1M_2y)$ $\hat{\beta}_2 = (X'_2M_1X_2)^{-1}(X'_2M_1y).$ ► The Frisch-Waugh theorem proves the anatomy of multivariate regression discussed and illustrated in Section 2.1.

2. Regression Fundamentals | 2.2 Ordinary Least Squares -Mean and Covariance of OLS

▶ **Proposition** (Unbiasedness): Under (A1)-(A3) , the OLS estimator $\hat{\beta}$ is unbiased, i.e.

$$\mathbb{E}[\hat{\boldsymbol{\beta}}|\boldsymbol{X}] = \boldsymbol{\beta} \qquad (\forall \boldsymbol{\beta}).$$

 ▶ Proposition (Variance of the OLSE): Under assumptions (A1)
 - (A4), the conditional covariance matrix of the OLS estimator *β* is given by

$$\boldsymbol{V}_{\hat{\boldsymbol{\beta}}} := \mathbb{V}[\hat{\boldsymbol{\beta}} | \boldsymbol{X}] = (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{D} \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1}.$$
(3)

If we additionally impose (A5), i.e., homoscedasticity, (3) collapses to

$$\boldsymbol{V}_{\hat{\beta}} = \sigma^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}. \tag{4}$$

2. Regression Fundamentals | 2.2 Ordinary Least Squares **Unbiased Estimation of** σ^2 and $\mathbb{V}[\hat{\beta}]$

• Proposition (Mean of SSE= $\sum_{i=1}^{n} e_i^2$): $\mathbb{E}[SSE|\mathbf{X}] = \mathbb{E}[\mathbf{e}'\mathbf{e}|\mathbf{X}] = (n-k)\sigma^2.$

$$\hat{\sigma}^2 = \frac{SSE}{n-k} = \frac{e'e}{n-k}$$

50

is an unbiased estimator of σ^2 , i.e. $\mathbb{E}[\frac{SSE}{n-k}|\mathbf{X}] = \sigma^2$.

2. Regression Fundamentals | 2.2 Ordinary Least Squares -Estimating the OLS VC Matrix

► Under homoscedasticity, we have

$$\hat{\mathbb{V}}[\hat{\boldsymbol{\beta}}|\boldsymbol{X}] = \hat{\sigma}^2(\boldsymbol{X}'\boldsymbol{X})^{-1},$$

which is an unbiased estimator of $\mathbb{V}[\hat{\beta}|\mathbf{X}]$, i.e. $\mathbb{E}[\hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}|\mathbf{X}] = \mathbb{V}[\hat{\beta}|\mathbf{X}]$.

▶ Under heteroscedasticity, $V_{\hat{\beta}}$ can be estimated by

$$\hat{oldsymbol{V}}_{\hat{eta}}^{EW} = (oldsymbol{X}'oldsymbol{X})^{-1} \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i' e_i^2
ight) (oldsymbol{X}'oldsymbol{X})^{-1}.$$

Developed by Eicker (1963) and introduced in econometrics by White (1980) and is refered to as *Eicker-White robust* or *heteroscedasticity-consistent* covariance estimator

2. Regression Fundamentals | 2.2 Ordinary Least Squares -**Computation of** $\hat{\mathbb{V}}[\hat{\beta}|X]$

```
# Residuals standard error hat(sigma)
sqrt(1/(n-k) * as.numeric(t(e)%*%e)) # by hand
summary (Im (lwage \sim ed + wks + exp, data = Wages)) $ sigma # by package
# VC matrix under homoscedasticity
# ____
VCV = (1/(n-k) * as.numeric(t(e) %*% e) * solve(t(X) %*% X))
vc < -vcov(lm(lwage ~ ed + wks + exp, data = Wages))
xtable :: xtable (vc, auto=TRUE)
# Standard errors of the estimated coefficients
(stder = sqrt(diag(VCV)))
# VC matrix under heteroskedasticity
model <- Im(lwage ~ wageedu + wks + exp, data = Wages)
vc < -vcovHC (model, type = 'HC0')
xtable::xtable(VCV. auto=TRUE)
```


Homoscedasticity:

-	(Intercept)	ed	wks	exp
(Intercept)	0.0044591	-0.000074	-0.0000692	-0.0000115
ed	-0.0000740	0.000005	0.0000000	0.000003
wks	-0.0000692	0.000000	0.0000015	0.0000000
exp	-0.0000115	0.000000	0.0000000	0.0000003

Heteroscedasticity:

	(Intercept)	ed	wks	exp
(Intercept)	0.0044591	-0.000074	-0.0000692	-0.0000115
ed	-0.0000740	0.000005	0.0000000	0.000003
wks	-0.0000692	0.000000	0.0000015	0.0000000
exp	-0.0000115	0.000000	0.0000000	0.0000003

2. Regression Fundamentals | 2.2 Ordinary Least Squares – Breusch/Pagan/Godfrey Test

• Linear model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

► Heteroscedastic error terms:

$$\mathbb{V}[\varepsilon_i] := \sigma_i^2 = h(\gamma_0 + \mathbf{z}_i' \boldsymbol{\gamma}),$$

54

 $\begin{array}{l} \triangleright \ h(\cdot) > 0 \ \text{denotes an unknown function,} \\ \triangleright \ \textbf{z}_i \ \text{denotes a} \ (p \times 1) \ \text{vector of (known!) variance regressors.} \end{array}$

▶ Null hypothesis: H_0 : $\gamma = 0$.

(i) Estimate the model under the null hypothesis.

(ii) Compute the centered R^2 of the auxiliary regression:

$$\mathbf{e}_i^2/\hat{\sigma}^2 = \delta_0 + \delta_1 z_{i1} + \ldots + \delta_p z_{ip} + \xi_i,$$

where e_i is the OLS residual of step (i).

(iii) Compute $LM_{BPG} = nR^2$.

- ▶ Null hypothesis: $\sigma_i^2 = \sigma^2$.
- ► Idea: Comparing CV matrices $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\Omega\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$ and $(\mathbf{X}'\mathbf{X})^{-1}$.
- (i) Estimate the model under the null hypothesis.
- (ii) Estimate the following auxiliary regression by OLS:

1

$$\mathbf{e}_i^2 = \delta_0 + \boldsymbol{\delta}' \boldsymbol{z}_i,$$

where z_i consists of the regressors, their squares and all cross terms.

(iii) Then, the LM statistic is computed based on the R^2 of the auxiliary regression

$$n \cdot R^2 \stackrel{a}{\sim}_{H_0} \chi^2_{(q)},$$

where the degrees of freedom q are the number of auxiliary regressors in (ii) excluding the intercept.


```
> bptest(model, data = Wages)
studentized Breusch-Pagan test
data: model
BP = 28.791, df = 3, p-value = 2.478e-06
> # White test
> bptest(model, ~wageedu*wks+wageedu*exp+wks*exp+1(wageedu)^2+1(exp)^2
+1(wks)^2, data = Wages)
studentized Breusch-Pagan test
data: model
BP = 57.347, df = 6, p-value = 1.554e-10
```

2. Regression Fundamentals | 2.2 Ordinary Least Squares ------Efficiency of OLS

Theorem (Gauss-Markov): Under the full ideal conditions (i) - (v), the least squares estimator β̂ is the best linear unbiased estimator (BLUE) of β, i.e.

$$\mathbb{V}[\tilde{\boldsymbol{\beta}}|\boldsymbol{X}] - \mathbb{V}[\hat{\boldsymbol{\beta}}_{OLS}|\boldsymbol{X}] = \sigma^2 \boldsymbol{D}' \boldsymbol{D} \quad \text{pos. semi-def.},$$

where $\tilde{\boldsymbol{\beta}}$ is any linear unbiased estimator of $\boldsymbol{\beta}$ and \boldsymbol{D} is given by

$$ilde{oldsymbol{eta}} - \hat{oldsymbol{eta}}_{OLS} = oldsymbol{D}'oldsymbol{y}.$$

Proposition (The LSE under Normality): Under the full ideal conditions (i) – (vi) the distribution of β̂ is given by:

$$\hat{\boldsymbol{eta}} | \boldsymbol{X} \sim \mathcal{N}(\boldsymbol{eta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}).$$

► **Theorem**: For the normally distributed linear regression model, the distribution of the statistic $e'e/\sigma^2$ is

$$rac{oldsymbol{e}'oldsymbol{e}}{\sigma^2}|oldsymbol{X}\sim\chi^2_{(n-k)}.$$

2. Regression Fundamentals | 2.2 Ordinary Least Squares -

Proposition (The variance of
<sup>
^ˆσ²</sup>): In a normally distributed regression model, the variance of
^{^ˆσ²} is given by:

$$\mathbb{V}[\hat{\sigma}^2|\boldsymbol{X}] = \frac{2\sigma^4}{n-k}.$$

▶ **Proposition** (Independence of $\hat{\beta}$ and $\hat{\sigma}^2$): In the normally distributed linear regression model, $\hat{\beta}$ and $\hat{\sigma}^2$ are independent random variables.

Coefficient of determination:

$$R^2 := \frac{\mathsf{SSR}}{\mathsf{SST}} = \frac{\hat{\mathbb{V}}[\hat{y}_i]}{\hat{\mathbb{V}}[y_i]}.$$

▶ If the model contains an intercept term, then

$$\sum_{i} (y_i - \bar{y})^2 = \sum_{i} (\hat{y}_i - \bar{y})^2 + \sum_{i} e_i^2$$

SST = SSR + SSE

► Then:

$$R^2 := 1 - \frac{\mathsf{SSE}}{\mathsf{SST}} = 1 - \frac{\hat{\mathrm{V}}[e_i]}{\hat{\mathrm{V}}[y_i]}$$

2. Regression Fundamentals | 2.2 Ordinary Least Squares — **Properties of** R^2

- ▶ $R^2 = \rho_{y,\hat{y}}^2$, where ρ denotes the empirical correlation.
- If the model has an intercept, $0 \le R^2 \le 1$.
- The R^2 follows an unknown distribution.
- Adding further variables leads to an increase in the R^2 .
- ► An *R*² can have a reasonable size in spurious regressions if the regressors are non-stationary.
- ► Linear transformations of the regression model do not change the value of the *R*² coefficient.

2. Regression Fundamentals | 2.2 Ordinary Least Squares — **Alternative** R^2 **Concepts**

▶ Non-centered R^2 :

$$\tilde{R}^2 = \frac{\sum_{i=1}^n \hat{y}_i^2}{\sum_{i=1}^n y_i^2} = 1 - \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n y_i^2}.$$

• General definition of an R^2 :

$$R^2 = \mathbb{C}\mathrm{or}[y_i, \hat{y}_i]^2.$$

• Adjusted R^2 :

$$\bar{R}^2 = 1 - rac{(n-1)\sum_{i=1}^n e_i^2}{(n-k)\sum_{i=1}(y_i - \bar{y})^2},$$

where k denotes the number of regressors in the model.

2. Regression Fundamentals | 2.2 Ordinary Least Squares — Multicollinearity

Lemma(Variance of $\hat{\beta}_j$) Under assumptions (A1) to (A5), $\mathbb{V}[\hat{\beta}_j | \mathbf{X}]$ can be written as

$$\mathbb{V}[\hat{\beta}_j|\boldsymbol{X}] = \frac{\sigma^2}{S_{x^{(j)}x^{(j)}}} \frac{1}{1 - R_j^2},$$

where $S_{x^{(j)}x^{(j)}} := \sum_{i=1}^{n} (x_i^{(j)} - \bar{x}^{(j)})^2$ denotes the 'variation' of regressor $x^{(j)}$ and R_j^2 is the R^2 of an (auxiliary) regression of $x^{(j)}$ on all $x^{(i)}$, $(i \neq j)$.

2. Regression Fundamentals | 2.2 Ordinary Least Squares – Indicators for Multicollinearity

Variance Inflation Factor:

$$\forall IF_j = \frac{1}{1 - R_j^2}$$

▶ Rule of thumb: $VIF_j > 10$ implies serious multicollinearity

- Low values of det(X'X) indicate multicollinearity.
- ▶ If **X** if in correlation form: $0 \le det(\mathbf{X}'\mathbf{X}) \le 1$.