1. The Experimental Ideal
Hospitals’ influence on health ...

= Do hospitals improve people's health?

» National Health Interview Survey about how healthy people
feel (1 excellent health; 5 poor health)

» Result suggests that hospitals make people sicker

Group Sample Size Mean health status Std. Error
Hospital 7774 2.79 0.014
No Hospital 90049 2.07 0.003

= Explanation: People who go to the hospital are sicker and
people who never went think they are healthier in the first place
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Describe problem more analytically

» Dummy variable:

D — 0 if not treated in hospital
"1 if treated in hospital

» Health status: y;
» Observed Outcome:

i if D=1
Yi= Yoi if D,' =0
= yoi + (y1i — Y0i) Di
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» Potential outcomes

_ ni if individual has been to the hospital
Y= Yoi if individual has not been to the hospital

= yoi + (y1i — yoi) D (1)
» The causal effect of hospitalization for an individual is then:
Yii — Yoi

» Problem: We never see both potential outcomes for any one
person!
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Comparing conditional means

» Difference in average health:
Elyi|D; = 1] — E[y;|D; = 0] = El[y1j|D; = 1] — E[yo;|D; = 1]
Observed difference in average health average treatment effect on the treated
+ Elyoi| Di = 1] — E[yoi|D; = 0]

selection bias

» Average causal effect of hospitalization on those who were
hospitalized:

E[y1i|Di = 1] — Elyio|Di = 1] = E[y1i — yoi| Di],

where E[y;;|D; = 1] is the health of the hospitalized, and
E[yoi| Di = 1] is the average health of those had they not been
hospitalized (unobservable)
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» Sick people are more likely to get treated; causes selection bias

» Problem: Selection bias prevents us from studying observable
quantitity E[y;|D; = 1] — E[y;|D; = 0]

» Goal of empirical economic research: Overcome selection bias
and say something about the causal effect of a variable
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Random Assignment

» Random assignment of D; solves the selection problem
because it makes D; independent

» Note that

Elyi|D; = 1] — E[yi|D; = 0] = E[y1;|D; = 1] — E[y0;|D; = 0]

= E[y1;|D; = 1] — E[yoi| D; = 1]

= E[y1i — yoi| Di = 1] = E[y1; — yoi]
since under independence of yp; and D;, we have
E[yoi|Di = 0] = Elyoi| D; = 1].

= Selection bias is eliminated!
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Education Research: Are smaller classes
better?

» Many non-experimental studies find no/little link between
class size and children learning

» Typical error: just comparing test outcomes without
accounting for selection bias

» Tennessee STAR experiment: Randomized trials; implemented
in 1985/86; ran for 4 years; invovled > 11,000 children

» Key question: Did the randomization successfully balance
subjects’ characteristics across the different treatment groups?



Star Effects on Learning of Small Class Sizes

Description
a cross-section from 1985-89
number of observations : 5748
observation : individuals

country : United States

Usage
data(Star)
Format
A dataframe containing :

tmathssk total math scaled score

treadssk total reading scaled score

classk type of class, a factor with levels (regular,small.class,regular.with.aide)
totexpk years of total teaching experience

sex a factor with levels (boy,girl)

freelunk qualified for free lunch ?

race a factor with levels (white,black,other)

schidkn school indicator variable
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Does randomization work?

Class size
Small Regular Regular/Aide
1. Free lunch 0.473 0.475 0.499
2. White/Asian 0.683 0.677 0.661
3. Score percentiles 0.744 0.733 0.733
4. Girls 0.485 0.486 0.487

» Differences are small = Randomization seems to work!
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Regression Analysis of Experiments

» Assume that treatment effect is the same for everyone:

Yii = Yoi = p

» Then, (1) becomes

i =_a + D; + P
=t L N

Elvoi]  (y1i—yoi) ¥oi—E[yoi]

where 7); is the random part of yp;.
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» Conditional expectations with treatment switched on and off
are
Elyi|Di = 1] = a + p + E[n;| D; = 1]
Elyj|D; = 0] = a + E[n;|D; = 0]

so that

Elyi| D1 = 1] = E[yi| Di = 0] = p + E[n;| D; = 1] — E[n;| D; = 0],

selection bias

where p is the treatment effect.
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» Selection bias corresponds to correlation between error 7; and
regressor D;.

» Note that
E[n;|D; = 1] — E[n;|D; = 0] = E[yoi| D; = 1] — E[y0;|D; = 0].

» Hence, correlation reflects the difference in no-treatment
potential outcomes between those who get treated and those
who don't.

» Under random assignment, the selection bias is not present.
Regressing y; on D; gives the causal effect of interest p.
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14

Dependent Variable: Score percentile

[€3) &) (3)

small 0.011*** 0.011*** 0.011***
(0.002) (0.002) (0.002)

black —0.024*** —0.009***
(0.002) (0.002)

girl 0.012*** 0.011***
(0.002) (0.001)

freelunch —0.027***
(0.002)

totexpk 0.001***
(0.0001)

Constant 0.733*** 0.735*** 0.735***
(0.001) (0.001) (0.002)

Observations 5,748 5,748 5,748

RZ

0.007 0.051 0.102
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Controls

» Covariates play two roles here:

> Assignment to classes of different sizes was random within
schools, but not across schools (different school types may
have different average class sizes)

= Need to include school-specific fixed effects
> Control for student characteristics
» Controls x; uncorrelated with treatment D; = no affect on p,
but may generate more precise estimates of causal effect
» Yields the model

yi = a+ pDi + xiv + i
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» We define the (n x 1) vector of dependent y and the (n x k)
matrix of independent variables X as follows:

Yn/ nxi1

x{ X11 X121 X1k

X X X
X — _ | e xe2 2k

n .
nxk Xnl  Xn2 - Xnk/ ok
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Conditional Expectation Function

» Definition of the CEF for continuous y; and conditional density
f;’i('|xi = X)

Elyilx; = x] = / tf, (t]x; = x)dt

» Definition of the CEF for discrete y; and conditional density
i (X = x)

Elyilxi = x] = th(tlx = x)
t

» CEF is random because x; is random and the CEF is a
function of x;!
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CEF-Decomposition Property

» An implication of the law of iterated expectations is the
possibility to split up a random variable in two pieces:

yi = Elyi|xi] + €;

> (i) &; is "mean-independent” of x;, i.e. E[gj|x;] =0
> (ii) €; is uncorrelated with any function of x;

» y; can be decomposed into a piece that is perfectly correlated
with x; (the CEF) and a piece, which is orthogonal to any
function of x;
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CEF Prediction Property & ANOVA

» CEF-Prediction Property: Let m(x;) be any function of x;.
The CEF solves

Elyj|x;] = a';g;(T;” El(yi — m(x))?],

so it is the minimum mean squared error (MMSE) predictor of
yi given Xx;.

» ANOVA Theorem: The unconditional variance of y; can be
split up as follows:

Viyi] = V(Elyi[xi]) + E[V(yi[xi)]
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CEF and linear regression

» Population regression problem: Least squares problem
formulated in terms of non-random features of the joint
distribution of dependent and independent variables.

» A population regression coefficient is the solution to a
population least squares problem.

» Let the (k x 1) regression coefficient vector 3 be defined as

B = argmin E[(y; — x/3)’]
5

» First order condition:
Elx(y; — x/3)] = 0
yielding
B = E[xix/] "E[x]yi]. - ®
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» By construction:
E[xi(yi — xi3)] = 0,
where
Yi—x.B=¢i.

defines the population residual, which is uncorrelated with the
regressors X;.
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Anatomy of multivariate regression

» In a multivariate regression, i.e., with more than one
(non-constant) regressor, the slope coefficient for the k-th
regressor is given by coefficient

Bk B Cov [y,', )?k,']
VI[Xki]
where Xy; is the residual from a population regression of x,; on

all other covariates.

» Hence, E[x;x/] 'E[x/y;] is the (k x 1) vector with k-th
element given by Cov [y;, Xki|/V[X«i]-
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Justification for regression

Theorem (Linear CEF). Suppose the CEF is linear. Then, the
population regression function is it, i.e., E[y;|x;] = x/3 with 3
given by (2).

But when is the CEF linear?

» If the vector (y,x;) is multivariate normally distributed
(problem: variables are often discrete)

» If the regression models are saturated, i.e., there is a separate
paramter for every possible combination of values the
regressors can take
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Theorem (Best Linear Predictor). The function x/3 is the best
linear predictor of y given x; in a MSE sense. Hence, E[y;|x;] is the
best MMSE predictor of y; given x; in the class of all functions of
X;.

Theorem (Regression-CEF Theorem). The function x/3 provides
the minimal MSE linear approximation to E[y;|x;], that is

B = argmin E[(E[yi|x;] — x/B)’]
A
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» While the CEF is the best unrestricted predictor (in a MSE
sense) of the dependent variable, the regression provides the
best linear predictor for it.

» If we want to approximate E[y;|x;] (as opposed to predicting
yi), regression provides the best (in a MSE sense) linear
approximation to it.

26
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How to estimate (37

» The population regression coefficient
B = E[xix{] E[x/y].
is estimated by replacing the population moments E[.] by their
corresponding sample means:

B = Elxx{]Elx/yi]

n -1 n
(1 o 1 .
= (X'X)"' X'y

» Ordinary Least Squares (OLS) estimator
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R Duncan Data

Duncan {carData)

Duncan's Occupational Prestige Data

Description
The Duncan data frame has 45 rows and 4 columns. Data on the prestige and other characteristics of 45 U. S. occupations in 1950.
Usage
Duncan
Format
This data frame contains the following columns:
type
Type of occupation. A factor with the following levels: prof, professional and managerial; we, white-colar; be, blue-colar.
income
Percentage of occupational incumbents in the 1950 US Census who earned $3,500 or more per year (about $36,000 in 2017 US dollars).

education

Percentage of occupational incumbents in 1950 who were high school graduates (which, were we cynical, we would say is roughly equivalent to a PhD in 2017)

prestige
Percentage of respondents in a social survey who rated the ocoupation as “good” or better in prestige
Source
Duncan, O. D. (1961) A socioeconomic index for all occupations. In Reiss, A. J., Jr. (Ed.) Occupations and Social Status. Free Press [Table VI-1).
References

Fox, J. (2016) Applied Regression Analysis and Generalized Linear Models, Third Edi

n. Sage.
Fox, J. and Weisberg, S. (2019) An R Companion to Applied Regression, Third Edition, Sage.

28

R Documentation

[Package carData version 3.0-3 Index
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
income 45 41.867 24.435 7 21 64 81
education 45 52.556 29.761 7 26 84 100
prestige 45 47.689 31.510 3 16 81 97

resmod2 45 —0.000 20.513 —59.088 —12.557 13.795 49.858
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Prestige
prestige
education 0.546***
(0.098)
income 0.599***
(0.120)
Constant —6.065
(4.272)
Observations 45
R2 0.828
Adjusted R? 0.820

Residual Std. Error
F Statistic

13.369 (df = 42)
101.216*** (df = 2; 42)

Note:

*p<0.1; **p<0.05; ***p<0.01

30
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How to estimate (5,7

» The population regression coefficient

_ Cov lyi, %]
= TR

is estimated by

B = Covlyi, Xl _ IS i = )i — %)
V[Xki] %27:1(52,(’. — X2 )
where Xj; is the residual from a regression of xx; on all other
covariates.
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R Partialling out income

prestige
prestige
residuals from regressing education on income 0.546**
(0.219)
Constant 47.689***
(4.441)
Observations 45
R? 0.126
Adjusted R? 0.106
Residual Std. Error 20.794 (df = 43)
F Statistic 6.214%* (df = 1; 43)

Note: *p<0.1; **p<0.05; ***p<0.01
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lllustration of regression coefficients

aaaaaaaaa
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R Wages

Wages {Ecdat}
Panel Data of Individual Wages

Description
a panel o 595 observations from 1976 to 1982
number of observations : 4165
observation : ndividuals
country : United States
Usage
data(Wages)
Format
Adataframe containing
op
Years of fulltime work experience
wh
weeks worked
bluecol
blue collar 7
ind
works in & manufacturing industry ?
south
resides in the south 2
smsa
resides in a standard melropotan statstical are 7
maried

married 7

R Documentation

34
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
experience 4,165 19.854 10.966 1 11 29 51
weeks worked 4,165 46.812 5.129 5 46 50 52
industry 4,165 0.395 0.489 0 0 1 1
education 4,165 12.845 2.788 4 12 16 17
log wage 4,165 6.676 0.462 4.605 6.395 6.953 8.537
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Dependent variable:

logarithmic Wage

years of education 0.065***
(0.002)
Constant 5.839***
(0.031)
Observations 4,165
R2 0.155
Adjusted R? 0.155

Residual Std. Error
F Statistic

0.424 (df = 4163)
764.526*** (df = 1; 4163)

Note:

*p<0.1; **p<0.05; ***p<0.01
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Regression fit vs. conditional means

avwage

37
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» lterating expectations in the formula for 3 yields
B = E[xx]] "Elxyi] = E[xx]] "E[xE[yi|x]].

» Hence, an implication of the regression-CEF theorem is that
regression coefficients can be obtained by using E[y;]x;] as
dependent variable instead of y;.

» Note that
E[(Elyilxi] — x!8)°] = > _(Elyilxi = u] — u'B)*gx(u),

where g, (u) is the probability mass function.

= 3 can be constructed from a weighted least squares regression
of E[y;|x; = u] on u, where u runs over the values of x; and
each observation is weighted based on the distribution of x;.
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R Non-weighted regression based on

conditional means

Dependent variable:

Means by years of education

years of education 0.057***
(0.006)

Constant 5.953%**
(0.071)

Observations 14

R2 0.872

Adjusted R? 0.862

Residual Std. Error
F Statistic

0.095 (df = 12)
81.912*** (df = 1; 12)

Note:

*p<0.1; **p<0.05; ***p<0.01
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R Weighted regression based on

conditional means

Dependent variable:

Means by years of education

years of education 0.065***
(0.004)
Constant 5.839%**
(0.056)
Observations 14
R2 0.951
Adjusted R? 0.947

Residual Std. Error
F Statistic

0.012 (df = 12)
235 ** (df = 1; 12)

Note:

*p<0.1; **p<0.05; ***p<0.01
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Assumptions

(A1) The model is linear in the parameters and with the conditional
mean specified by E[y|X] = X3.

(A2) The regressor matrix X is of full column rank k, i.e.,
rk(X) = k < n (with probability one).

(A3) The regressors xi(j), j=1,..., k are strictly exogenous with
El[e|X] = 0 implying E[e;|x1,...,x,] =0 forall i=1,..., n.



2. Regression Fundamentals | 2.2 Ordinary Least Squares ———— 43
Define the conditional covariance matrix of € as
V[e|X] = Ele€| X] =: .

(A4) The error terms are assumed to be uncorrelated, i.e.,
Eleie;j|X] =0 for i # j. Then, ¥ = D with

D := diag[o3,...,02].

(A5) The error terms are assumed to be (conditionally)
homoscedastic, i.e., they have equal variances across the
sample, i.e., V[g;|X] = E[e?|X] =02 forall i = 1,...,n.
Then, D = 521, where I, denoting an n-dimensional identity
matrix.
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Hat Matrix and Residual Maker

» The OLS residual vector is given by

» Vector of fitted dependent variables:

y=XB

where P := X(X'X)~1X" is a projection matrix.

44
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» Therefore:
e=y—Py=(I-P)y=My,
where
M=I1-P=1-X(X'X)"1X
is called "residual maker” or "annihilator”.

» For the matrix M it can be shown that MX =0, M’ = M,
and MM =M

» Then, the relationship between e and € is

e=M(XB+¢e)= Me,

45
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Numerical Properties of OLS

» In terms of the residual vector, the F.O.C. is given by

n
X'e= Zx,-e,- =0.
i=1

> That is, each column of X is orthogonal to e.
= ye=0

» If the regression equation has an intercept:

n n
E Xj1 € — E € = 0.
i=1 i=1
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Frisch-Waugh Theorem
» Assume the regression model can be written as
y=XiB1+XofB2+¢
aAnd thg OI:S estimator is given by
B=(B1.8) = (X'X)"'X'y.
» Theorem (Frisch-Waugh) Define
M = Iy — X0 (X{X1) 1 X{, My = Iy — Xa(X5X2) "1 X}
as the residual makers based on regressions on X; and Xo.

Then, B1 (32) is obtained as the OLS estimator in a
regression of Myy (May ) on M; X, (M, X1). Hence,

Br =(X{M2X1) 1 (X{ May)
B2 =(XsM1 X2) " H(XsMyy).

47
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» The Frisch-Waugh theorem proves the anatomy of multivariate
regression discussed and illustrated in Section 2.1.
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Mean and Covariance of OLS

» Proposition (Unbiasedness): Under (A1)-(A3) , the OLS
estimator 3 is unbiased, i.e.

E[BX]=8  (VB).

» Proposition (Variance of the OLSE): Under assumptions (Al)
- (A4), the conditional covariance matrix of the OLS estimator

3 is given by

V; = V[BIX] = (X'X) "' X'DX(X'X)"". (3)
If we additionally impose (A5), i.e., homoscedasticity, (3)
collapses to

V; =a?(X'X)"". (4)
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Unbiased Estimation of ¢2 and V[B]

» Proposition (Mean of SSE=>""_, €?):
E[SSE|X] = E[e'e|X] = (n — k)o>.

» Then,

n—k n—k

.o SSE e'e
52 —

is an unbiased estimator of 02, i.e. E[22£|X] = 52,
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Estimating the OLS VC Matrix
» Under homoscedasticity, we have
V[BIX] = 8%(X'X) ",

which is an unbiased estimator of V[B|X],
ie. E[62(X'X)~1X] = V[B|X].
» Under heteroscedasticity, Vj; can be estimated by

n
\A/;W = (X’X)_1 (Z x,-x,{e,?) (X’X)_l.
i=1

Developed by Eicker (1963) and introduced in econometrics by
White (1980) and is refered to as Eicker-White robust or
heteroscedasticity-consistent covariance estimator
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R Computation of ¥[3|X]

# Residuals standard error hat(sigma)
sqrt(1/(n—k) % as.numeric(t(e)%*%e)) # by hand
summary(Im(lwage = ed + wks + exp, data = Wages))S$sigma # by package

# VC matrix under homoscedasticity

VCV = (1/(n—k) * as.numeric(t(e) %*% e) * solve(t(X) %% X))
ve<—vcov (Im(lwage = ed + wks + exp, data = Wages))
xtable :: xtable(ve, auto=TRUE)

# Standard errors of the estimated coefficients
(stder = sqrt(diag(VCV)))

# VC matrix under heteroskedasticity

model <— Im(lwage ~ wageedu + wks + exp, data = Wages)
ve<—vcovHC (model , type = 'HCO0')
xtable :: xtable (VCV, auto=TRUE)

52
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Homoscedasticity:

(Intercept) ed wks exp
(Intercept) 0.0044591 -0.000074 -0.0000692 -0.0000115
ed -0.0000740 0.000005 0.0000000 0.0000003
wks -0.0000692 0.000000 0.0000015 0.0000000
exp -0.0000115 0.000000 0.0000000 0.0000003

Heteroscedasticity:

(Intercept) ed wks exp
(Intercept) 0.0044591 -0.000074 -0.0000692 -0.0000115
ed -0.0000740 0.000005 0.0000000 0.0000003
wks -0.0000692 0.000000 0.0000015 0.0000000
exp -0.0000115 0.000000 0.0000000 0.0000003

53
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Breusch/Pagan/Godfrey Test

» Linear model: y = XB +¢

» Heteroscedastic error terms:
2
Vleil := o7 = h(v0 + z7),

> h(-) > 0 denotes an unknown function,
> z; denotes a (p x 1) vector of (known!) variance regressors.

» Null hypothesis: Hy : v = 0.

54
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LM-Testing Procedure

(i) Estimate the model under the null hypothesis.

(i) Compute the centered R? of the auxiliary regression:

e?/6% =00 + 61211 + ... + Opzip + &)

where e; is the OLS residual of step (i).
(iii) Compute LMpgpg = nR2.

55
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White Test

Null hypothesis: 02 = o2.

Idea: Comparing CV matrices (X’X) 1 X’QX(X'X)~! and
(X'X)~ L.
Estimate the model under the null hypothesis.

Estimate the following auxiliary regression by OLS:
e,-2 =g + (5,2,',

where z; consists of the regressors, their squares and all cross
terms.
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(iii) Then, the LM statistic is computed based on the R? of the
auxiliary regression

where the degrees of freedom g are the number of auxiliary
regressors in (i) excluding the intercept.

57
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> bptest(model, data = Wages)
studentized Breusch—Pagan test

data: model
BP = 28.791, df = 3, p—value = 2.478e—06

> # White test
> bptest(model, “wageeduxwkstwageedu*exp+wks*exp+I|(wageedu) 241 (exp)~2
+1(wks)~2, data = Wages)

studentized Breusch—Pagan test

data: model
BP = 57.347, df = 6, p—value = 1.554e—10

58
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Efficiency of OLS

» Theorem (Gauss-Markov): Under the full ideal conditions
(1) — (v), the least squares estimator 3 is the best linear
unbiased estimator (BLUE) of 3, i.e.

V[B|X] — V[BoLs|X] = 6>D'D  pos. semi-def.,

where 3 is any linear unbiased estimator of 8 and D is given

by

B—Bos =D'y.



2. Regression Fundamentals | 2.2 Ordinary Least Squares ———— 60
Statistical Properties under Normality

» Proposition (The LSE under Normality): Under the full ideal
conditions (/) — (vi) the distribution of 3 is given by:

B1X ~ N(B,5%(X'X)™1).

» Theorem: For the normally distributed linear regression
model, the distribution of the statistic e’e/a2 is
e'e

2
?\X ~ X(n—k)
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» Proposition (The variance of 2): In a normally distributed
regression model, the variance of 6 is given by:

204
n—k’

V[62|X] =

» Proposition (Independence of B and 52): In the normally
distributed linear regression model, 3 and 62 are independent
random variables.
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Goodness-of-Fit

» Coefficient of determination:

R2 — SSJ — V[_}//\,]
SST V]

» If the model contains an intercept term, then

Yo = e+ e

1 1

SST = SSR + SSE

» Then:

Rr.—q_ 9B _ VIl
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Properties of R?

vV v.v.v Y

R? = p}%f,, where p denotes the empirical correlation.

If the model has an intercept, 0 < R? < 1.
The R2 follows an unknown distribution.
Adding further variables leads to an increase in the R2.

An R? can have a reasonable size in spurious regressions if the
regressors are non-stationary.

Linear transformations of the regression model do not change
the value of the R? coefficient.
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Alternative R?> Concepts

» Non-centered R?:
n ~AD n 2
B2 — doic1 Vi —1 D1 €

Py yi2 Py yizl
» General definition of an R?:
R? = (Cor[y,-,f/,-]2.

» Adjusted R?:

R2_1_ (n—1)37 €

(n—k)> i1 (vi - )%

where k denotes the number of regressors in the model.
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Multicollinearity

Lemma(Variance of ;) Under assumptions (A1) to (A5), V[5;|X]
can be written as

o? 1

V[Bi|X] = —————
[ﬁj’ ] 5 (j)X(j) 1 _ Rjzv

X

where S, ().() == Y11 (X; xU) — 2))2 denotes the "variation' of
regressor X(J) and R2 is the R? of an (auxiliary) regression of x{)

on all x(, (i # j).
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Indicators for Multicollinearity

» Variance Inflation Factor:

1

2
1R

VIF; =

Rule of thumb: VIF; > 10 implies serious multicollinearity
No problem if max(VIF;) <5.
J

>
>
» Low values of det(X’X) indicate multicollinearity.
» If X if in correlation form: 0 < det(X’'X) < 1.
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