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Hospitals’ influence on health ...

) Do hospitals improve people’s health?

I National Health Interview Survey about how healthy people
feel (1 excellent health; 5 poor health)

I Result suggests that hospitals make people sicker

) Explanation: People who go to the hospital are sicker and
people who never went think they are healthier in the first place
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Describe problem more analytically

I Dummy variable:

Di =

(
0 if not treated in hospital
1 if treated in hospital

I Health status: yi

I Observed Outcome:

yi =

(
y1i if Di = 1
y0i if Di = 0

= y0i + (y1i � y0i )Di
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I Potential outcomes

yi =

(
y1i if individual has been to the hospital
y0i if individual has not been to the hospital

= y0i + (y1i � y0i )Di (1)

I The causal effect of hospitalization for an individual is then:

y1i � y0i

I Problem: We never see both potential outcomes for any one
person!
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Comparing conditional means

I Difference in average health:

E[yi |Di = 1]� E[yi |Di = 0]| {z }
Observed difference in average health

= E[y1i |Di = 1]� E[y0i |Di = 1]| {z }
average treatment effect on the treated

+ E[y0i |Di = 1]� E[y0i |Di = 0]| {z }
selection bias

I Average causal effect of hospitalization on those who were
hospitalized:

E[y1i |Di = 1]� E[yi0|Di = 1] = E[y1i � y0i |Di ],

where E[y1i |Di = 1] is the health of the hospitalized, and
E[y0i |Di = 1] is the average health of those had they not been
hospitalized (unobservable)

IE - Chap 1



1. The Experimental Ideal 6

I Sick people are more likely to get treated; causes selection bias

I Problem: Selection bias prevents us from studying observable

quantitity E[yi |Di = 1]� E[yi |Di = 0]

I Goal of empirical economic research: Overcome selection bias
and say something about the causal effect of a variable
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Random Assignment

I Random assignment of Di solves the selection problem
because it makes Di independent

I Note that

E[yi |Di = 1]� E[yi |Di = 0] = E[y1i |Di = 1]� E[y0i |Di = 0]
= E[y1i |Di = 1]� E[y0i |Di = 1]
= E[y1i � y0i |Di = 1] = E[y1i � y0i ]

since under independence of y0i and Di , we have
E[y0i |Di = 0] = E[y0i |Di = 1].

) Selection bias is eliminated!
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Education Research: Are smaller classes
better?

I Many non-experimental studies find no/little link between
class size and children learning

I Typical error: just comparing test outcomes without
accounting for selection bias

I Tennessee STAR experiment: Randomized trials; implemented
in 1985/86; ran for 4 years; invovled > 11, 000 children

I Key question: Did the randomization successfully balance
subjects’ characteristics across the different treatment groups?
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STAR Data

IE - Chap 1



1. The Experimental Ideal 10

Does randomization work?

Class size
Small Regular Regular/Aide

1. Free lunch 0.473 0.475 0.499

2. White/Asian 0.683 0.677 0.661

3. Score percentiles 0.744 0.733 0.733

4. Girls 0.485 0.486 0.487

I Differences are small ) Randomization seems to work!

IE - Chap 1



1. The Experimental Ideal 11

Regression Analysis of Experiments

I Assume that treatment effect is the same for everyone:

y1i � y0i = ⇢

I Then, (1) becomes

yi = ↵|{z}
E[y0i ]

+ ⇢|{z}
(y1i�y0i )

Di + ⌘i|{z}
y0i�E[y0i ]

,

where ⌘i is the random part of y0i .
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I Conditional expectations with treatment switched on and off
are

E[yi |Di = 1] = ↵+ ⇢+ E[⌘i |Di = 1]
E[yi |Di = 0] = ↵+ E[⌘i |Di = 0]

so that

E[yi |D1 = 1]� E[yi |Di = 0] = ⇢+ E[⌘i |Di = 1]� E[⌘i |Di = 0]| {z }
selection bias

,

where ⇢ is the treatment effect.
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I Selection bias corresponds to correlation between error ⌘i and
regressor Di .

I Note that

E[⌘i |Di = 1]� E[⌘i |Di = 0] = E[y0i |Di = 1]� E[y0i |Di = 0].

I Hence, correlation reflects the difference in no-treatment
potential outcomes between those who get treated and those
who don’t.

I Under random assignment, the selection bias is not present.
Regressing yi on Di gives the causal effect of interest ⇢.
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Dependent Variable: Score percentile
(1) (2) (3)

small 0.011⇤⇤⇤ 0.011⇤⇤⇤ 0.011⇤⇤⇤
(0.002) (0.002) (0.002)

black �0.024⇤⇤⇤ �0.009⇤⇤⇤
(0.002) (0.002)

girl 0.012⇤⇤⇤ 0.011⇤⇤⇤
(0.002) (0.001)

freelunch �0.027⇤⇤⇤
(0.002)

totexpk 0.001⇤⇤⇤
(0.0001)

Constant 0.733⇤⇤⇤ 0.735⇤⇤⇤ 0.735⇤⇤⇤
(0.001) (0.001) (0.002)

Observations 5,748 5,748 5,748
R2 0.007 0.051 0.102
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Controls

I Covariates play two roles here:

. Assignment to classes of different sizes was random within
schools, but not across schools (different school types may
have different average class sizes)
) Need to include school-specific fixed effects

. Control for student characteristics

I Controls xi uncorrelated with treatment Di ) no affect on ⇢,
but may generate more precise estimates of causal effect

I Yields the model

yi = ↵+ ⇢Di + x 0
i � + ⌘i
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I We define the (n ⇥ 1) vector of dependent y and the (n ⇥ k)
matrix of independent variables X as follows:

y =

0
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Conditional Expectation Function

I Definition of the CEF for continuous yi and conditional density
fyi (·|xi = x)

E[yi |xi = x ] =

Z
tfyi (t|xi = x)dt

I Definition of the CEF for discrete yi and conditional density
fyi (·|xi = x)

E[yi |xi = x ] =
X

t

tfyi (t|xi = x)

I CEF is random because xi is random and the CEF is a
function of xi !
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CEF-Decomposition Property

I An implication of the law of iterated expectations is the
possibility to split up a random variable in two pieces:

yi = E[yi |xi ] + "i

. (i) "i is ”mean-independent” of xi , i.e. E["i |xi ] = 0

. (ii) "i is uncorrelated with any function of xi

I yi can be decomposed into a piece that is perfectly correlated
with xi (the CEF) and a piece, which is orthogonal to any
function of xi
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CEF Prediction Property & ANOVA

I CEF-Prediction Property: Let m(xi ) be any function of xi .
The CEF solves

E[yi |xi ] = argmin
m(xi )

E[(yi �m(xi ))2],

so it is the minimum mean squared error (MMSE) predictor of
yi given xi .

I ANOVA Theorem: The unconditional variance of yi can be
split up as follows:

V[yi ] = V(E[yi |xi ]) + E[V(yi |xi )].
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CEF and linear regression

I Population regression problem: Least squares problem
formulated in terms of non-random features of the joint
distribution of dependent and independent variables.

I A population regression coefficient is the solution to a
population least squares problem.

I Let the (k ⇥ 1) regression coefficient vector � be defined as

� = argmin
�̃

E[(yi � x 0
i �̃)

2]

I First order condition:

E[xi (yi � x 0
i �̃)] = 0

yielding

� = E[xix 0
i ]
�1E[x 0

i yi ]. (2)
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I By construction:

E[xi (yi � x 0
i�)] = 0,

where

yi � x
0
i � = "i .

defines the population residual, which is uncorrelated with the
regressors xi .
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Anatomy of multivariate regression

I In a multivariate regression, i.e., with more than one
(non-constant) regressor, the slope coefficient for the k-th
regressor is given by coefficient

�k =
Cov [yi , x̃ki ]

V[x̃ki ]

where x̃ki is the residual from a population regression of xki on
all other covariates.

I Hence, E[xix 0
i ]
�1E[x 0

i yi ] is the (k ⇥ 1) vector with k-th
element given by Cov [yi , x̃ki ]/V[x̃ki ].
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Justification for regression

Theorem (Linear CEF). Suppose the CEF is linear. Then, the
population regression function is it, i.e., E[yi |xi ] = x 0

i� with �
given by (2).

But when is the CEF linear?
I If the vector (y , x 0

i ) is multivariate normally distributed
(problem: variables are often discrete)

I If the regression models are saturated, i.e., there is a separate
paramter for every possible combination of values the
regressors can take
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Theorem (Best Linear Predictor). The function x 0
i� is the best

linear predictor of y given xi in a MSE sense. Hence, E[yi |xi ] is the
best MMSE predictor of yi given xi in the class of all functions of
xi .

Theorem (Regression-CEF Theorem). The function x 0
i� provides

the minimal MSE linear approximation to E[yi |xi ], that is

� = argmin
�̃

E[(E[yi |xi ]� x 0
i �̃)

2]
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I While the CEF is the best unrestricted predictor (in a MSE
sense) of the dependent variable, the regression provides the
best linear predictor for it.

I If we want to approximate E[yi |xi ] (as opposed to predicting
yi ), regression provides the best (in a MSE sense) linear
approximation to it.

IE - Chap 1



2. Regression Fundamentals | 2.1 Conditional Expectations 27

How to estimate �?

I The population regression coefficient

� = E[xix 0
i ]
�1E[x 0

i yi ].

is estimated by replacing the population moments E[.] by their
corresponding sample means:

�̂ = Ê[xix 0
i ]
�1Ê[x 0

i yi ]

=

 
1
n

nX

i=1

xix 0
i

!�1

1
n

nX

i=1

x 0
i yi

= (X 0X )�1X 0y

I Ordinary Least Squares (OLS) estimator
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Duncan Data
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
income 45 41.867 24.435 7 21 64 81
education 45 52.556 29.761 7 26 84 100
prestige 45 47.689 31.510 3 16 81 97
resmod2 45 �0.000 20.513 �59.088 �12.557 13.795 49.858
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Prestige
prestige

education 0.546⇤⇤⇤
(0.098)

income 0.599⇤⇤⇤
(0.120)

Constant �6.065
(4.272)

Observations 45
R2 0.828
Adjusted R2 0.820
Residual Std. Error 13.369 (df = 42)
F Statistic 101.216⇤⇤⇤ (df = 2; 42)

Note:
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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How to estimate �k?

I The population regression coefficient

�k =
Cov [yi , x̃ki ]

V[x̃ki ]

is estimated by

�̂k =
dCov[yi , x̃ki ]
V̂[x̃ki ]

=
1

n

Pn
i=1

(yi � ȳ)(x̃ki � ¯̃xk)
1

n

Pn
i=1

(x̃ki � ¯̃xk)2
,

where x̃ki is the residual from a regression of xki on all other
covariates.
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Partialling out income

prestige
prestige

residuals from regressing education on income 0.546⇤⇤
(0.219)

Constant 47.689⇤⇤⇤
(4.441)

Observations 45
R2 0.126
Adjusted R2 0.106
Residual Std. Error 29.794 (df = 43)
F Statistic 6.214⇤⇤ (df = 1; 43)

Note:
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Illustration of regression coefficients
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Wages

IE - Chap 1



2. Regression Fundamentals | 2.1 Conditional Expectations 35

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
experience 4,165 19.854 10.966 1 11 29 51
weeks worked 4,165 46.812 5.129 5 46 50 52
industry 4,165 0.395 0.489 0 0 1 1
education 4,165 12.845 2.788 4 12 16 17
log wage 4,165 6.676 0.462 4.605 6.395 6.953 8.537
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Dependent variable:

logarithmic Wage
years of education 0.065⇤⇤⇤

(0.002)

Constant 5.839⇤⇤⇤
(0.031)

Observations 4,165
R2 0.155
Adjusted R2 0.155
Residual Std. Error 0.424 (df = 4163)
F Statistic 764.526⇤⇤⇤ (df = 1; 4163)

Note:
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Regression fit vs. conditional means
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I Iterating expectations in the formula for � yields

� = E[xix 0
i ]
�1E[xiyi ] = E[xix 0

i ]
�1E[xiE[yi |xi ]].

I Hence, an implication of the regression-CEF theorem is that
regression coefficients can be obtained by using E[yi ]xi ] as
dependent variable instead of yi .

I Note that

E[(E[yi |xi ]� x 0
i �̃)

2] =
X

u

(E[yi |xi = u]� u 0�̃)2gx(u),

where gx(u) is the probability mass function.
) � can be constructed from a weighted least squares regression

of E[yi |xi = u] on u, where u runs over the values of xi and
each observation is weighted based on the distribution of xi .
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Non-weighted regression based on
conditional means

Dependent variable:

Means by years of education
years of education 0.057⇤⇤⇤

(0.006)

Constant 5.953⇤⇤⇤
(0.071)

Observations 14
R2 0.872
Adjusted R2 0.862
Residual Std. Error 0.095 (df = 12)
F Statistic 81.912⇤⇤⇤ (df = 1; 12)

Note:
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Weighted regression based on
conditional means

Dependent variable:

Means by years of education
years of education 0.065⇤⇤⇤

(0.004)

Constant 5.839⇤⇤⇤
(0.056)

Observations 14
R2 0.951
Adjusted R2 0.947
Residual Std. Error 0.012 (df = 12)
F Statistic 235⇤⇤⇤ (df = 1; 12)

Note:
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Assumptions

(A1) The model is linear in the parameters and with the conditional
mean specified by E[y |X ] = X�.

(A2) The regressor matrix X is of full column rank k , i.e.,
rk(X ) = k < n (with probability one).

(A3) The regressors x
(j)
i , j = 1, . . . , k are strictly exogenous with

E["|X ] = 0 implying E["i |x1, . . . , xn] = 0 for all i = 1, . . . , n.

IE - Chap 1



2. Regression Fundamentals | 2.2 Ordinary Least Squares 43

Define the conditional covariance matrix of " as

V["|X ] = E[""0|X ] =:  .

(A4) The error terms are assumed to be uncorrelated, i.e.,
E["i"j |X ] = 0 for i 6= j . Then,  = D with

D := diag [�2

1, . . . ,�
2

n].

(A5) The error terms are assumed to be (conditionally)
homoscedastic, i.e., they have equal variances across the
sample, i.e., V["i |X ] = E["2

i |X ] = �2 for all i = 1, . . . , n.
Then, D = �2In, where In denoting an n-dimensional identity
matrix.
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Hat Matrix and Residual Maker

I The OLS residual vector is given by

e =

0

BBB@

e1

e2
...
en

1

CCCA
= y � ŷ = y � X �̂.

I Vector of fitted dependent variables:

ŷ = X �̂

= X (X 0X )�1X 0y
= Py ,

where P := X (X 0X )�1X 0 is a projection matrix.
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I Therefore:

e = y � Py = (I � P)y = My ,

where

M := I � P = I � X (X 0X )�1X 0

is called ”residual maker” or ”annihilator”.

I For the matrix M it can be shown that MX = 0, M 0 = M ,
and MM = M

I Then, the relationship between e and " is

e = M(X� + ") = M",
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Numerical Properties of OLS

I In terms of the residual vector, the F.O.C. is given by

X 0e =
nX

i=1

xiei = 0.

. That is, each column of X is orthogonal to e.
) ŷ 0e = 0

I If the regression equation has an intercept:

nX

i=1

xi1 · ei =
nX

i=1

ei = 0.
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Frisch-Waugh Theorem

I Assume the regression model can be written as

y = X1�1 + X2�2 + "

and the OLS estimator is given by
�̂ = (�̂0

1
, �̂0

2
)0 = (X 0X )�1X 0y .

I Theorem (Frisch-Waugh) Define

M1 = IN � X1(X 0
1X1)

�1X 0
1, M2 = IN � X2(X 0

2X2)
�1X 0

2

as the residual makers based on regressions on X1 and X2.

Then, �̂1 (�̂2) is obtained as the OLS estimator in a
regression of M1y (M2y ) on M1X2 (M2X1). Hence,

�̂1 =(X 0
1M2X1)

�1(X 0
1M2y)

�̂2 =(X 0
2M1X2)

�1(X 0
2M1y).
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I The Frisch-Waugh theorem proves the anatomy of multivariate
regression discussed and illustrated in Section 2.1.
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Mean and Covariance of OLS
I Proposition (Unbiasedness): Under (A1)-(A3) , the OLS

estimator �̂ is unbiased, i.e.

E[�̂|X ] = � (8�).

I Proposition (Variance of the OLSE): Under assumptions (A1)
- (A4), the conditional covariance matrix of the OLS estimator
�̂ is given by

V�̂ := V[�̂|X ] = (X 0X )�1X 0DX (X 0X )�1. (3)

If we additionally impose (A5), i.e., homoscedasticity, (3)
collapses to

V�̂ = �2(X 0X )�1. (4)
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Unbiased Estimation of �2 and V[�̂]

I Proposition (Mean of SSE=
Pn

i=1
e
2

i ):

E[SSE |X ] = E[e 0e|X ] = (n � k)�2.

I Then,

�̂2 =
SSE

n � k
=

e 0e
n � k

is an unbiased estimator of �2, i.e. E[ SSEn�k |X ] = �2.
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Estimating the OLS VC Matrix

I Under homoscedasticity, we have

V̂[�̂|X ] = �̂2(X 0X )�1,

which is an unbiased estimator of V[�̂|X ],
i.e. E[�̂2(X 0X )�1|X ] = V[�̂|X ].

I Under heteroscedasticity, V�̂ can be estimated by

V̂ EW
�̂

= (X 0X )�1

 
nX

i=1

xix 0
i e

2

i

!
(X 0X )�1.

Developed by Eicker (1963) and introduced in econometrics by
White (1980) and is refered to as Eicker-White robust or
heteroscedasticity-consistent covariance estimator
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Computation of V̂[�̂|X ]

# Re s i d u a l s s t anda rd e r r o r hat ( s igma )

s q r t (1 / (n−k ) ∗ as . numer i c ( t ( e )%∗%e ) ) # by hand

summary ( lm ( lwage ~ ed + wks + exp , data = Wages ) ) $ s igma # by package

# VC mat r i x under h omo s c e d a s t i c i t y

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

VCV = (1 / (n−k ) ∗ as . numer i c ( t ( e ) %∗% e ) ∗ s o l v e ( t (X) %∗% X) )
vc<−vcov ( lm ( lwage ~ ed + wks + exp , data = Wages ) )
x t a b l e : : x t a b l e ( vc , auto=TRUE)

# Standard e r r o r s o f the e s t ima t ed c o e f f i c i e n t s

( s t d e r = s q r t ( d i a g (VCV) ) )

# VC mat r i x under h e t e r o s k e d a s t i c i t y

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

model <− lm ( lwage ~ wageedu + wks + exp , data = Wages )
vc<−vcovHC ( model , t ype = ’HC0 ’ )
x t a b l e : : x t a b l e (VCV, auto=TRUE)
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Homoscedasticity:

(Intercept) ed wks exp
(Intercept) 0.0044591 -0.000074 -0.0000692 -0.0000115
ed -0.0000740 0.000005 0.0000000 0.0000003
wks -0.0000692 0.000000 0.0000015 0.0000000
exp -0.0000115 0.000000 0.0000000 0.0000003

Heteroscedasticity:

(Intercept) ed wks exp
(Intercept) 0.0044591 -0.000074 -0.0000692 -0.0000115
ed -0.0000740 0.000005 0.0000000 0.0000003
wks -0.0000692 0.000000 0.0000015 0.0000000
exp -0.0000115 0.000000 0.0000000 0.0000003
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Breusch/Pagan/Godfrey Test

I Linear model: y = X� + "

I Heteroscedastic error terms:

V["i ] := �2

i = h(�0 + z 0
i�),

. h(·) > 0 denotes an unknown function,

. zi denotes a (p ⇥ 1) vector of (known!) variance regressors.

I Null hypothesis: H0 : � = 0.
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LM-Testing Procedure

(i) Estimate the model under the null hypothesis.

(ii) Compute the centered R
2 of the auxiliary regression:

e
2

i /�̂
2 = �0 + �1zi1 + . . .+ �pzip + ⇠i ,

where ei is the OLS residual of step (i).

(iii) Compute LMBPG = nR
2.
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White Test

I Null hypothesis: �2

i = �2.
I Idea: Comparing CV matrices (X 0X )�1X 0⌦X (X 0X )�1 and

(X 0X )�1.
(i) Estimate the model under the null hypothesis.
(ii) Estimate the following auxiliary regression by OLS:

e
2

i = �0 + �0zi ,

where zi consists of the regressors, their squares and all cross
terms.
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(iii) Then, the LM statistic is computed based on the R
2 of the

auxiliary regression
n · R2 a⇠

H0
�2

(q),

where the degrees of freedom q are the number of auxiliary
regressors in (ii) excluding the intercept.
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> bp t e s t ( model , data = Wages )

s t u d e n t i z e d Breusch−Pagan t e s t

data : model
BP = 28 .791 , d f = 3 , p−v a l u e = 2.478 e−06

> # White t e s t

> bp t e s t ( model , ~wageedu∗wks+wageedu∗ exp+wks∗ exp+I ( wageedu)^2+ I ( exp )^2
+I ( wks )^2 , data = Wages )

s t u d e n t i z e d Breusch−Pagan t e s t

data : model
BP = 57 .347 , d f = 6 , p−v a l u e = 1.554 e−10
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Efficiency of OLS

I Theorem (Gauss-Markov): Under the full ideal conditions
(i)� (v), the least squares estimator �̂ is the best linear
unbiased estimator (BLUE) of �, i.e.

V[�̃|X ]� V[�̂OLS |X ] = �2D 0D pos. semi-def.,

where �̃ is any linear unbiased estimator of � and D is given
by

�̃ � �̂OLS = D 0y .
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Statistical Properties under Normality

I Proposition (The LSE under Normality): Under the full ideal
conditions (i)� (vi) the distribution of �̂ is given by:

�̂|X ⇠ N(�,�2(X 0X )�1).

I Theorem: For the normally distributed linear regression
model, the distribution of the statistic e 0e/�2 is

e 0e
�2

|X ⇠ �2

(n�k).
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I Proposition (The variance of �̂2
): In a normally distributed

regression model, the variance of �̂2 is given by:

V[�̂2|X ] =
2�4

n � k
.

I Proposition (Independence of �̂ and �̂2
): In the normally

distributed linear regression model, �̂ and �̂2 are independent
random variables.
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Goodness-of-Fit
I Coefficient of determination:

R
2 :=

SSR
SST

=
V̂[ŷi ]
V̂[yi ]

.

I If the model contains an intercept term, then
X

i

(yi � ȳ)2 =
X

i

(ŷi � ȳ)2 +
X

i

e
2

i

SST = SSR + SSE

I Then:

R
2 := 1 � SSE

SST
= 1 � V̂[ei ]

V̂[yi ]
.
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Properties of R2

I R
2 = ⇢2

y ,ŷ , where ⇢ denotes the empirical correlation.

I If the model has an intercept, 0  R
2  1.

I The R
2 follows an unknown distribution.

I Adding further variables leads to an increase in the R
2.

I An R
2 can have a reasonable size in spurious regressions if the

regressors are non-stationary.

I Linear transformations of the regression model do not change
the value of the R

2 coefficient.
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Alternative R2 Concepts

I Non-centered R
2:

R̃
2 =

Pn
i=1

ŷ
2

iPn
i=1

y2

i

= 1 �
Pn

i=1
e
2

iPn
i=1

y2

i

.

I General definition of an R
2:

R
2 = Cor[yi , ŷi ]2.

I Adjusted R
2:

R̄
2 = 1 � (n � 1)

Pn
i=1

e
2

i

(n � k)
P

i=1
(yi � ȳ)2

,

where k denotes the number of regressors in the model.
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Multicollinearity

Lemma(Variance of �̂j) Under assumptions (A1) to (A5), V[�̂j |X ]
can be written as

V[�̂j |X ] =
�2

Sx(j)x(j)

1
1 � R2

j

,

where Sx(j)x(j) :=
Pn

i=1
(x (j)i � x̄

(j))2 denotes the ’variation’ of
regressor x (j) and R

2

j is the R
2 of an (auxiliary) regression of x (j)

on all x (i), (i 6= j).

IE - Chap 1



2. Regression Fundamentals | 2.2 Ordinary Least Squares 66

Indicators for Multicollinearity

I Variance Inflation Factor:

VIFj =
1

1 � R2

j

I Rule of thumb: VIFj > 10 implies serious multicollinearity
I No problem if max

j
(VIFj)  5.

I Low values of det(X 0X ) indicate multicollinearity.
I If X if in correlation form: 0  det(X 0X )  1.
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