## Part I

## Introductory Session: SH 2-3, BM 2

## Outline

- Elementary algebra
- Equations
- Summation notation


## Real numbers

- $\mathbb{N}$ (natural numbers): $1,2,3$
- $\mathbb{Z}$ (integers): $\quad 0,1,-1$
- $\mathbb{Q}$ (rational numbers): $\mathrm{a} / \mathrm{b}$, where $a, b \in \mathbb{Z}, b \neq 0$
- decimal system: $42.14=4 \cdot 10^{1}+2 \cdot 10^{0}+1 \cdot 10^{-1}+4 \cdot 10^{-2}$
- scientific notation: $2.34 \mathrm{e}-02=2.34 \cdot 10^{-2}=0.023$

Note: Here, e is not the Euler constant!
4

- can be written as finite decimal fractions (see above) or periodic decimal fractions: $13 / 11=1.18181818$
- $\mathbb{R}$ (real numbers): arbitrary decimal fractions - all of the above, plus: $\sqrt{2}, \pi, 2^{\sqrt{2}}, 0.12112111211112 \ldots$ and many (many) others


## Integer Powers I

Definition:

$$
\begin{aligned}
a^{n} & :=\underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n \text { factors }} \\
a^{0} & :=1 \text { for } a \neq 0 \\
a^{-n} & :=\frac{1}{a^{n}} \text { for } a \neq 0
\end{aligned}
$$

Properties:

$$
\begin{aligned}
a^{r} \cdot a^{s} & =a^{\mathrm{r}+\mathrm{S}} \\
\left(a^{r}\right)^{s} & =a^{\mathrm{r}} \mathrm{~S}
\end{aligned}
$$

## Integer Powers II

## Example

If $x^{-2} y^{3}=5$, compute $x^{2} y^{-3}+2 x^{-10} y^{15}$

$$
\begin{aligned}
& \left(x^{\wedge}-2 y^{\wedge} 3\right)^{\wedge} 5 / 5^{\wedge} 5 \\
& 0.2+2^{\star} 3125=6250.2
\end{aligned}
$$

## Integer Powers IIII

## Example

Suppose you deposit $€ 1000$ in a bank account paying $2 \%$ interest at the end of each year. How much do you have after 5 years?

## $1000^{* 1.02 \wedge}{ }^{\wedge}$

## Integer Powers IV

## Example

Suppose you buy something for $€ 1000 \cdot 1.02^{5}$ which decreases in value (depreciates) by $2 \%$ per year. How much is it worth after 5 years?

## $1000^{*} 1.02^{\wedge} 5^{*} 0.98^{\wedge} 5=998$

## Integer Powers V

## Example

How much money should you have deposited in a bank 5 years ago at $2 \%$ yearly interest in order to buy something for $€ 1000$ today?

$$
\begin{gathered}
x^{\star} 1.02^{\wedge} 5=1000 \\
x=1000 / 1.02^{\wedge} 5 \\
x=-905.73
\end{gathered}
$$

## Some important rules of algebra I

$$
\begin{aligned}
-(a+b) & =-a-b \\
a(b+c) & =a b+a c \\
(a+b)(c+d) & =a c+a d+b c+b d \\
(a+b)^{2} & =\begin{array}{c}
a^{\wedge} 2+2 a b \\
+b^{\wedge} 2
\end{array} \\
(a-b)^{2} & =a^{\wedge} 2-2 a b+b^{\wedge} 2 \\
(a+b)(a-b) & =
\end{aligned}
$$

## Some important rules of algebra II

## Example

Expand and simplify: $(2 t-1)\left(t^{2}-2 t+1\right)$

## Some important rules of algebra III

## Example

Expand and simplify: $(a+1)^{2}+(a-1)^{2}-2(a+1)(a-1)$

$$
a^{\wedge} 2+2 a+1+a^{\wedge} 2-2 a+1-2\left(a^{\wedge} 2-1\right)=4
$$

## Some important rules for fractions I

$$
\begin{aligned}
\frac{a \cdot \not \subset}{b \cdot \not b} & =\frac{a}{b} \quad \text { if } b \neq 0 \text { and } c \neq 0 \\
\frac{-a}{b} & =\frac{a}{-b}=-\frac{a}{b} \\
\frac{a}{c}+\frac{b}{c} & =\frac{\mathrm{a}+\mathrm{b}}{c} \\
\frac{a}{b}+\frac{c}{d} & =\frac{\mathrm{ad}+\mathrm{bc}}{b d} \\
\frac{a}{b} \cdot \frac{c}{d} & =\frac{\mathrm{ac}}{b d} \\
\frac{a}{b} \div \frac{c}{d} & =\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
\end{aligned}
$$

## Some important rules for fractions II

## Example

Simplify:

$$
\frac{1}{1+x^{p-q}}+\frac{1}{1+x^{q-p}}
$$

## Fractional powers I

Find $x$ such that $x^{2}=a$ ?

$$
a^{1 / 2} \cdot a^{1 / 2}=a^{1 / 2+1 / 2}=a^{1}=a
$$

Find $x$ such that $x^{n}=a$ ?

$$
a^{1 / n} \cdot \ldots \cdot a^{1 / n}=a^{1 / n+\ldots+1 / n}=a^{1}=a
$$

Notation:

$$
\begin{aligned}
a^{1 / 2} & =\sqrt{a} \\
a^{1 / n} & =\sqrt[n]{a}
\end{aligned}
$$

## Fractional powers II

## Example

Compute $\sqrt[3]{27},(1 / 32)^{1 / 5}$, and $0.0001^{0.25}$.

## Fractional powers III

## Example

An amount of $€ 5000$ in an account has increased to $€ 6000$ in 20 years. What (constant) yearly interest rate $p$ has been used?

$$
\begin{aligned}
& 5000^{*}(1+p)^{\wedge} 20=6000 \\
& (1+p)^{\wedge} 20=1.2 \\
& 1+p=20 \text { th root of } 1.2-1=0.0092
\end{aligned}
$$

## Inequalities I

## Example

Find what values of $x$ satisfy $3 x-5>x-3$.

$$
\begin{gathered}
2 x>2 \\
x>1
\end{gathered}
$$

## Inequalities II

## Example

Find all $x$ such that $|3 x-2| \leq 5$.

2 solutions
+-

## Outline

- Elementary algebra
- Equations
- Summation notation


## Equations I

Equations are called equivalent if they have the same solutions, and

- adding/subtracting the same number
- multiplying (or dividing) by the same number $\neq 0$
to both sides of the equality sign constitutes an equivalence transformation. We often call doing fancy equivalence transformations solving.


## Equations II

## Example

Solve for $x$ :

$$
\begin{gathered}
\sqrt{1+x}+\frac{a x}{\sqrt{1+x}}=0 \\
1+x+a \mathrm{x}=0
\end{gathered}
$$

## Equations III

$$
x(1+a)=-1
$$

## Example

A firm manufactures a commodity that costs $€ 20$ per unit to produce. In addition, the firm has fixed costs of $€ 2000$. Each unit is sold for $€ 75$. How many units must be sold if the firm is to meet a profit target of $€ 14500$ ?

$$
\begin{gathered}
c(x)=2000+20 x \\
r(x)=75 x \\
p(x)=r(x)-c(x) \\
75 x-(2000+20 x)=14500 \\
55 x=16500 \\
x=300
\end{gathered}
$$

## Quadratic equations II

Find $x$, such that

$$
a x^{2}+b x+c=0, \quad \text { where } a, b, c \in \mathbb{R}
$$

- Easy case $1: a=0: \mathrm{bx}+\mathrm{C}+0, \mathrm{X}=-\mathrm{c} / \mathrm{b}, \mathrm{b}$ is not 0
- Easy case $2: \stackrel{a}{b}=x^{\wedge} 2+c=0, x=+-$ root-c/ a a is not $0, c / a$ is less or equal to 0
- Easy case 3: $c=0$ :


## Quan $a x^{\wedge} 2+b x=x(a x+b)=0$

General case: If $b^{2}-4 a c \geq 0$ and $a \neq 0$, then

$$
a x^{2}+b x+c=0 \quad \text { if and only if } \quad x=\frac{-b \pm \sqrt{\mathrm{b}^{\wedge} 2-4 \mathrm{ac}}}{2 a}
$$

## Quadratic equations III

## Example

A producer faces the following demand: $P=100-2 Q$, where $P$ stands for the price of a certain product and $Q$ for the quantity of products sold. For what price is the total revenue $T R=P \cdot Q$ equal to zero?

$$
\begin{gathered}
(100-2 q)^{\star} q=100 q-2 q^{\wedge} 2=0 \\
q 1=0 \\
q 2-50 \\
p 1=100 \\
p 2=0
\end{gathered}
$$

## Outline

- Elementary algebra
- Equations
- Summation notation


## Summation notation I

$$
\sum_{i=1}^{n} N_{i}:=N_{1}+N_{2}+\ldots+N_{n}
$$

Some important properties:

$$
\begin{array}{r}
\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\text { Text } \\
\sum_{i=1}^{n} c \cdot a_{i}=
\end{array}
$$

## Summation notation II

## Example

## Evaluate

$$
\sum_{i=-2}^{3}(i+3)^{i}
$$

## Summation notation III

## Example

Express in summation notation:

$$
\begin{gathered}
1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\ldots-\frac{x^{79}}{80}+\frac{x^{80}}{81} \\
\left(\mathrm{x}^{\wedge} \mathrm{i}-1\right) \\
/ \mathrm{i})
\end{gathered}
$$

