STATISTIK FÜR DIE SOZIALWISSENSCHAFTEN

Multivariate Zusammenhänge

Einführung in Zusammenhänge zwischen mehr als zwei Variablen

Themen der Woche

- Formen kausaler Beziehungen
 - Muster additiver kausaler Effekte
 - Muster nicht-additiver kausaler Effekte
 - Fehlspezifikationen
 - Modelle in der Praxis

Kausalanalyse

Drittvariablenkontrolle als Kausalanalyse

Was kennzeichnet kausale Beziehungen? Kausale Beziehungen sind gerichtet:

⇒ Änderung bei Variable X (Ursache) löst Änderung bei Variable Y aus (Wirkung).

Kausale Beziehungen als gerichtete Graphen:

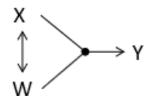
- Graph hier = Darstellung eines Zusammenhangsnetzwerks zwischen Variablen
- Kausale Beziehung wird durch Pfeil symbolisiert, z.B. X wirkt auf Y: $X \rightarrow Y$
- Neben gerichteten Beziehungen kann es ungerichtete (korrelative) Beziehungen zwischen Variablen geben, die durch Doppelpfeil gekenn-

zeichnet sind und für theoretisch unspezifizierte (kausal

nicht aufgelöste) Beziehungen stehen, z.B.: $X_1 \leftrightarrow X_2$.

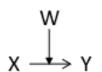
⇒ Graph symbolisiert theoretische Erwartungen!

Basiselemente eines grafischen Kausalmodells


X ---> Y X wirkt direkt auf Y: direkter Effekt

X ---> W ---> Y X wirkt *indirekt* über die *Mediatorvariable*

W auf Y: indirekter Effekt

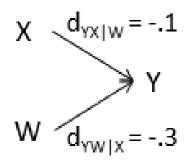


Die korrelierten (exogenen) Variablen X und W wirken *jeweils* (für sich) auf die (endogene) Variable Y

X und W wirken **zusammen** auf Y: **Interaktion**, alternativ:

direkter Effekt von X auf Y wird durch W moderiert (W = Moderatorvariable),

bzw. umgekehrt : Direkter Effekt von W auf Y wird durch X moderiert (X = *Moderatorvariable*).



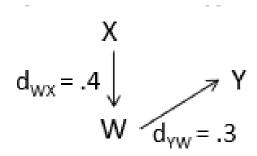
Muster additiver kausaler Effekte zwischen 3 dichotomen Variablen

- Welche Datenmuster sind bei welchen kausalen Zusammenhängen zu erwarten?
- Wir werden mit konstruierten (simulierte) Daten in trivariaten Kreuztabellen folgende Muster von Effekt betrachten:
- a) Linear-Additive Effekte unkorrelierter unabhängiger Variablen
- b) Indirekter Effekt über W
- c) Scheinkausalität
- d) Positive Konfundierung
- e) Negative Konfundierung

∕leine Notizen:

a) Linear-Additive Effekte unkorrelierter unabhängiger Variablen

	W=1			W=0		
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1	30	40	70	60	70	130
Y=0	70	60	130	40	30	70_
Σ	100	100	200	100	100	200


$$d_{YX|W=1} = -0.10$$

 $d_{YX|W=0} = -0.10$
 $d_{YW|X=1} = -0.30$
 $d_{YW|X=0} = -0.30$

	Aggregierung über W					
	X=1 X=0 ∑					
•	Y=1	90	110	200		
	Y=0	110	90	200		
	Σ	200	200	400		

$$d_{WX} = 0$$
 $d_{YX} = -0.10$
 $= d_{YX|W}$
 $d_{YW} = -0.30$
 $= d_{YW|X}$

Gesamteffekt: 30/100 - 70/100 = -0.4 = -0.1 + -0.3 (= Effekt von X + Effekt von W)

b) Indirekter Effekt über W: bei Kontrolle durch Mediator keine konditional. Effekte!

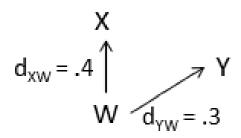
	W=1			W	W=0	
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1	84	36	120	18	42	60
Y=0	56	24	80	42	98	140
Σ	140	60	200	60	140	200

$d_{YX W=1} =$	0
d _{YX W=0} =	
d _{YW X=1} =	
$d_{YW X=0} =$	+0.30

Aggregierung über W					
X=1 X=0 ∑					
Y=1	102	78	108		
Y=0	98	122	220		
Σ	200	200	400		

Aggregierung über X				
	W=1	Σ		
Y=1	120	60	200	
Y=0	80	140	200	
Σ	200	200	400	

$$d_{WX} = +0.40$$


$$d_{YX} = +0.12$$

$$= d_{WX} \cdot d_{YW}$$

$$\neq d_{YX|W} = 0$$

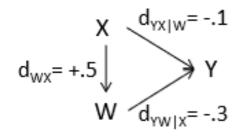
$$d_{YW} = +0.30$$

c) Scheinkausalität: bei Kontrolle gemeinsamer Ursache keine konditionalen Effekte!

	W=1			W	=0	
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1 Y=0	84	36	120	18	42	60
Y=0	56	24	80	42	98	140
Σ	140	60	200	60	140	200

$$d_{YX|W=1} = 0$$

 $d_{YX|W=0} = 0$
 $d_{YW|X=1} = +0.30$
 $d_{YW|X=0} = +0.30$


Aggregierung über W					
X=1 X=0 Σ					
Y=1	102	78	108		
Y=0	98	122	220		
Σ	200	200	400		

Aggregierung über X					
	W=1	W=0	Σ		
Y=1	120	60	200		
Y=0	80	140	200		
Σ	200	200	400		

$$d_{WX} = +0.40$$
 $d_{YX} = +0.12$
 $= d_{XW} \cdot d_{YX}$
 $\neq d_{YX|W} = 0$
 $d_{YW} = +0.30$

Hinweis: Indirekter Effekt und Scheinkausalität auf Basis der Tabellendaten ununterscheidbar.

d) Positive Konfundierung: |kausaler Effekt| < |(bivariater) asymmetrischer Effekt|

	W=1			W	=0	
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1	45	20	65	30	105	135
Y=0	105	30	135	20	45	65
Σ	150	50	200	50	150	200

$$d_{YX|W=1} = -0.10$$

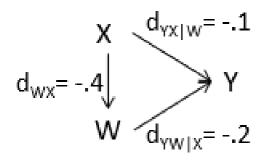
 $d_{YX|W=0} = -0.10$
 $d_{YW|X=1} = -0.30$
 $d_{YW|X=0} = -0.30$

Aggregierung über W						
	X=1 X=0 ∑					
Y=1	75	125	200			
Y=0	125	75	200			
Σ	200	200	400			

Application and application					
	W=1	W=0	Σ		
Y=1	65	135	200		
Y=0	135	65	200		
Σ	200	200	400		
	Y=1 Y=0	W=1 Y=1 65 Y=0 135	W=1 W=0 Y=1 65 135 Y=0 135 65		

Aggregierung über X

Aggregierung über Y							
	X=1 X=0						
W=1	150	50	200				
W=0	50	150	200				
Σ	200	200	400				


$$\begin{array}{ccc} d_{WX} &= +0.50 \\ d_{YX}| &= |-0.25| > |d_{YX|W}| \\ d_{YW}| &= |-0.35| > |d_{YW|X}| \end{array}$$

Meine Notizen:

→ *Positive Konfundierung:* bivariater Effekt > konditionale Effekt

Beispiel: $|d_{YX}\%| = |-25.0| > |-10.0| = |d_{YX|W}\%|$ und $|d_{YW}\%| = |-35.0| > |-30.0| = |d_{YW|X}\%|$.

e) Negative Konfundierung: |kausaler Effekt|> |(bivariater) asymmetrischer Effekt|

	W=1			W	W=0		
	X=1	X=0	Σ	X=1	X=0	Σ	_
Y=1	27	77	104	91	45	136	
Y=0	33	63	96	49	15	64	
Σ	60	140	200	140	60	200	-

$$d_{YX|W=1} = -0.10$$

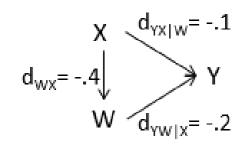
 $d_{YX|W=0} = -0.10$
 $d_{YW|X=1} = -0.20$
 $d_{YW|X=0} = -0.20$

Agg	Agg	İ			
	X=1	X=0	Σ		
Y=1	118	122	240	Y=1	
Y=0	82	78	160	Y=0	
Σ	200	200	400	Σ	Ī

Aggregierung über X						
	W=1 W=0 ∑					
Y=1	104	136	240			
Y=0	96	64	160			
Σ	200	200	400			

000							
	X=1	X=0	Σ				
W=1	60	140	200				
W=0	140	60	200				
Σ	200	200	400				

Aggregierung über Y


$$\begin{array}{ll} d_{WX} & = -0.40 \\ |d_{YX}| & = |-0.02| < |d_{YX|W}| \\ |d_{YW}| & = |-0.16| < |d_{YW|X}| \end{array}$$

Meine Notizen

→ Negative Konfundierung: bivariater Effekt < konditionale Effekte

Beispiel: $|d_{YX}\%| = |-2.0| < |-10.0| = d_{YX|W}\%$ und $|d_{YW}\%| = |-16.0| < |-20.0| = d_{YW|X}\%$.

e) Negative Konfundierung: |kausaler Effekt| > |(bivariater) asymmetrischer Effekt|

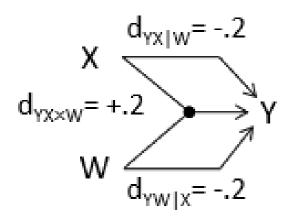
	W=1			W:	_	
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1	27	77	104	91	45	136
Y=0	33	63	96	49	15	64
Σ	60	140	200	140	60	200

$$d_{YX|W=1} = -0.10$$

 $d_{YX|W=0} = -0.10$
 $d_{YW|X=1} = -0.20$
 $d_{YW|X=0} = -0.20$

Bezeichnungen für spezielle negative Konfundierungen:

- Suppression: Konfundierung reduziert direkten Effekt ohne ihn aufzuheben (wie im Beispiel)
- Scheinbare Nichtbeziehung: Konfundierung hebt direkten Effekt auf (Gegenteil zu Scheinkausalität)
- Verzerrung: Durch Konfundierung hat bivariate Beziehung umgekehrtes Vorzeichen von direkten Effekt

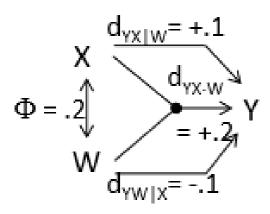

Muster nicht-additiver kausaler Effekte zwischen 3 dichotomen Variablen

Welche Datenmuster sind bei welchen kausalen Zusammenhängen zu erwarten?

- Neben Effekten, die sich (einfach) zusammenaddieren lassen, sind auch solche möglich, die miteinander interagieren und daher nicht zu addieren sind.
- Wir werden dazu folgende Muster von Effekt betrachten:
- a) Interaktion bei additiver Modellierung
- b) Proportional-multiplikative Effekte unkorrelierter unabhängiger Variablen
- c) Proportional-multiplikative Effekte kor. unabh. Variablen

- d) Scheinkausalität bzw. indirekte prop.-multip. Effekte
- e) Nichtproportional-multiplikative Effekte kor. Unabh. Var.

a) Interaktion bei additiver Modellierung


	W=1			W	W=0		
	X=1	X=0	Σ	X=1	X=0	Σ	
Y=1	60	40	100	40	60	100	
Y=0	40	60	100	60	40	100	
Σ	100	100	200	100	100	200	

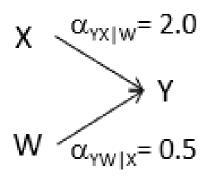
$$\begin{aligned} &d_{YX|W=1} = +0.20 \\ &d_{YX|W=0} = -0.20 \\ &d_{YW|X=1} = +0.20 \\ &d_{YW|X=0} = -0.20 \end{aligned}$$

	regieru			Aggregierung über X			er X	Agg	regier	ung üb	er Y
	X=1	X=0	Σ		W=1	W=0	Σ		X=1	X=0	Σ
Y=1	100	100	200	Y=1	100	100	200	W=1	100	100	200
Y=0	100	100	200	Y=0	100	100	200	W=0	100	100	200
Σ	200	200	400	Σ	200	200	400	Σ	200	200	400

$$d_{YX} = 0$$
$$d_{YW} = 0$$
$$d_{WX} = 0$$

a) Interaktion bei additiver Modellierung

	W=1			W	=0	
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1	84	48	132	64	60	124
Y=0	36	32	68	16	60	76
Σ	120	80	200	80	120	200


$d_{YX W=1}$	= 0.10
$d_{YX W=0}$	= 0.30
$d_{YW X=1}$	= -0.10
$d_{YW X=0}$	= +0.10

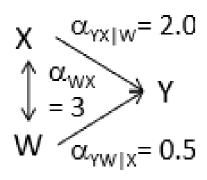
Aggregierung über W							
	X=1 X=0 ∑						
Y=1	148	108	256				
Y=0	52	92	144				
Σ	200	200	400				

Aggregierung über X							
	W=1 W=0 ∑						
Y=1	132	124	256				
Y=0	68	76	144				
Σ	200	200	400				

$$d_{YX} = +0.217$$

 $d_{YW} = +0.043$
 $d_{WX} = +0.20$

b) proportional-multiplikative Effekte unkorrelierter unabhängiger Variablen



		/=1		W		
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1 Y=0	60	20	80	80	30	110
Y=0	60	40	100	40	30	70
Σ	120	60	180	120	60	180

$$\begin{split} &\alpha_{YX|W=1} = 2.0 \text{ ; } 2 > 1.96 = \alpha_{YX} \\ &\alpha_{YX|W=0} = 2.0 \\ &\alpha_{YW|X=1} = 0.5 \text{ ; } 1\text{-}.5 > 1\text{-}.509 = 1\text{-}\alpha_{YW} \\ &\alpha_{YW|X=0} = 0.5 \\ &\text{Bivariater Effekte kleiner!} \end{split}$$

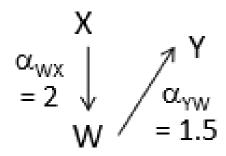
Agg	regieru	ıng über W Aggre		regieru	regierung über X Agg			Aggregierung über Y				
	X=1	X=0	Σ		W=1	W=0	Σ		X=1	X=0	Σ	$\alpha_{vx} = 1.96$
Y=1	140	50	190	Y=1	80	110	190	W=1	120	60	180	$\alpha_{vw} = 0.509$
Y=0	100	70	170	Y=0	100	70	170	W=0	120	60	180	
Σ	240	120	360	Σ	180	180	360	Σ	240	120	360	$\alpha_{\text{WX}} = 1$

c) proportional-multiplikative Effekte korrelierter unabhängiger Variablen

		/=1		W=0		
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1 Y=0	90	20 40	110	80 40	60	140
Y=0	90	40	130	40	60	100
Σ	180	60	240	120	120	240

$\alpha_{YX W=1} = 2.0 < \alpha_{YX} = 1.635$
$\alpha_{YX W=0} = 2.0$
$\alpha_{YW X=1} = 0.5$; 15 > 1- $\alpha_{YX} = 1-0.604$
$\alpha_{YW X=0} = 0.5$
Hier: negative Konfundierung: X→ Y po

Hier: negative Konfundierung: $X \rightarrow Y$ pos. Effekt, aber $X \rightarrow W$ pos. & $W \rightarrow Y$ neg. Effekt.

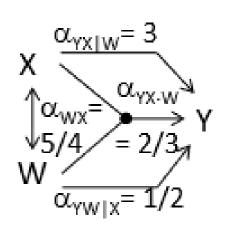

Aggregierung über W							
	X=1	X=0	Σ				
Y=1	170	80	250				
Y=0	130	100	220				
Σ	300	180	480				

Aggregierung über X					
	W=1	Σ			
Y=1	110	140	250		
Y=0	130	100	230		
Σ	240	240	480		

Aggregierung über Y					
	X=1	X=0	Σ		
W=1	180	60	240		
W=0	120	120	240		
Σ	300	180	480		

$$\frac{\sum_{\text{140}}}{240}$$
 $\alpha_{\text{YX}} = 1.635$
 $\alpha_{\text{YW}} = 0.604$
 $\alpha_{\text{WX}} = 3$

d) Scheinkausalität bzw. indirekte proportionalmultiplikative Effekte


		/=1		W		
	X=1	X=0	Σ	X=1	X=0	Σ
Y=1	60	120	180	10	40	50
Y=0	40	80	120	10	40	50
Σ	100	200	300	20	80	100

$\alpha_{YX W=1} = 1.0 \neq \alpha_{YX} = 1.05$
$\alpha_{YX W=0} = 1.0$
$\alpha_{YW X=1} = 1.5 = \alpha_{YW} = 1.5$
$\alpha_{YW X=0} = 1.5$

					regieru				regier	ung übe	er	
		X=1	X=0	Σ		W=1	W=0	Σ		X=1	X=0	:
	Y=1	70	160	230	Y=1	180	50	230	W=1	100	200	3
	Y=0	50	120	170	Y=0	120	50	170	W=0	20	80	1
	Σ	120	280	400	Σ	300	100	400	Σ	120	280	4

$$\alpha_{YX} = 1.05$$
 $\alpha_{YW} = 1.5$
 $\alpha_{WX} = 2$

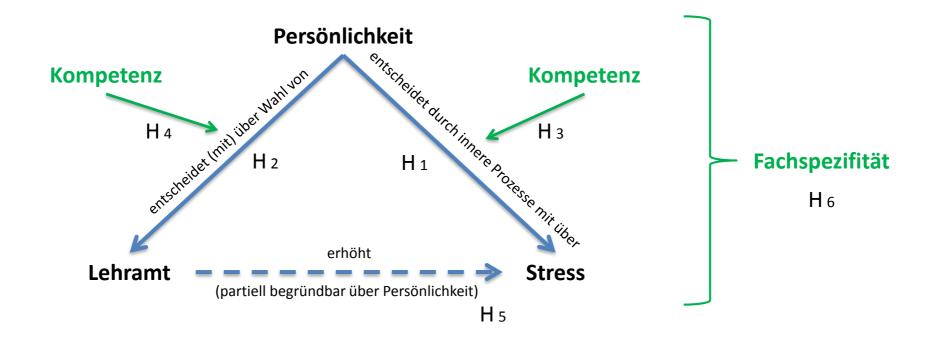
e) nichtproportional-multiplikative Effekte korrelierter unabhängiger Variablen

		/=1		W=0				
	X=1	X=0	Σ	X=1	X=0	Σ		
Y=1	90	20	110	90	25	115		
Y=0	90	40	130	30	25	55_		
Σ	180	60	240	120	50	170		

$\alpha_{yx w=1}$	=2.0
$\alpha_{YX\mid W=0}$	
$\alpha_{_{YW X=1}}$	
$\alpha_{\text{YM} X=0}$	

Aggregierung über W				Aggregierung über X				Aggregierung über Y			
	X=1	X=0	Σ		W=1	W=0	Σ		X=1	X=0	Σ
Y=1	180	45	225	Y=1	110	115	225	W=1	180	60	240
Y=0	120	65	185	Y=0	130	55	230	W=0	120	50	170
Σ	300	110	410	Σ	240	170	410	Σ	300	110	410

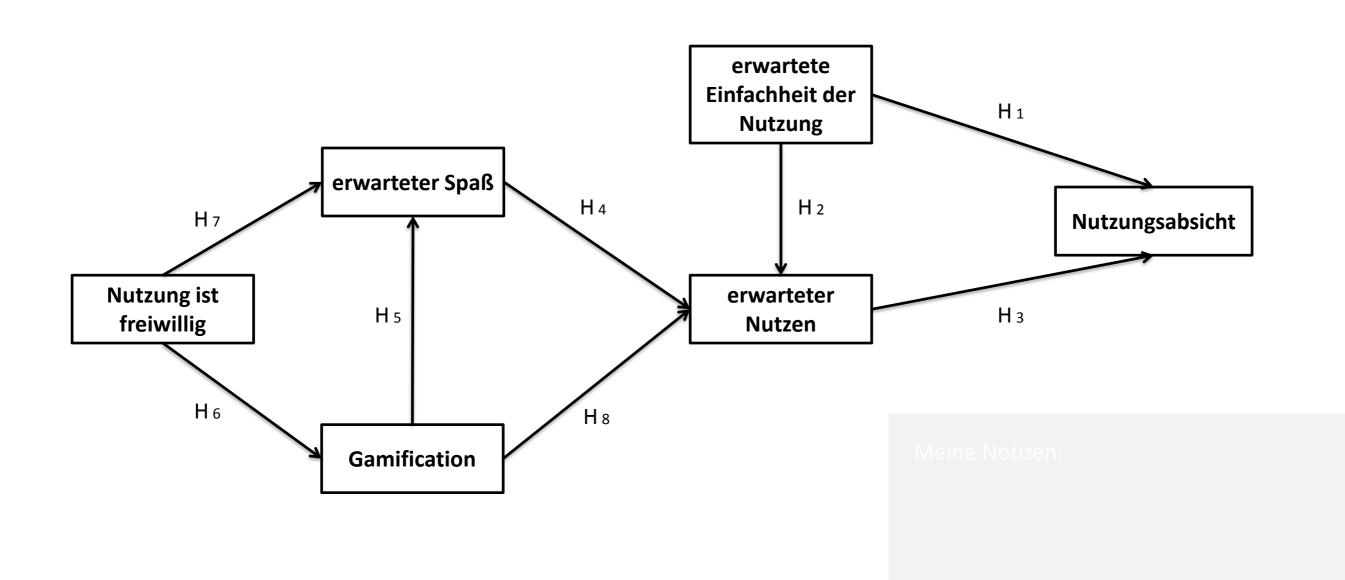
$$\alpha_{YX} = 2.167$$
 $\alpha_{YW} = 0.405$
 $\alpha_{WX} = 1.25$

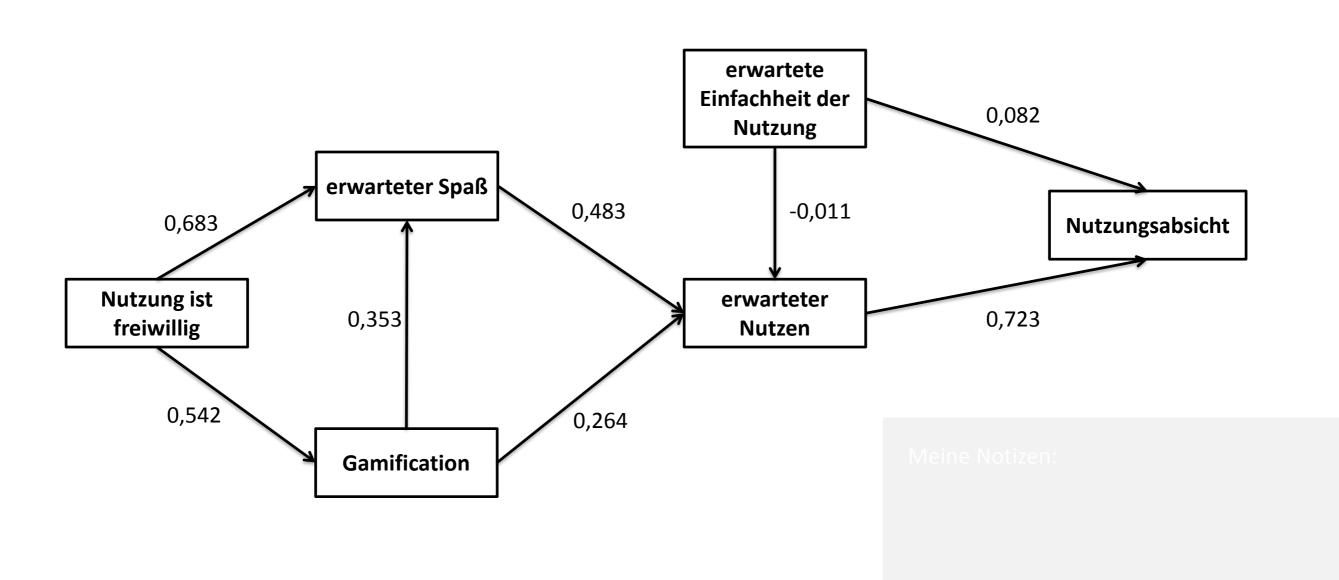

Vergleich linear-additiver mit nicht-additiven kausalen Effekten

- Bei dichotomen Variablen sind additive wie multiplikative Effekte mit Daten vereinbar.
- Wenn eine Variable kausal unabhängig von allen Ausprägungskombinationen der übrigen
 Variablen ist, kann diese Variable ignoriert werden!
- Wenn eine Variable nur indirekt oder über Scheinkausalität mit einer abhängigen Variable zusammenhängt, weist sie bei Kontrolle (durch die Mediatorvariablen bzw. durch die Scheinkausalität auslösenden Variablen) keinen konditionalen Effekt mehr auf!
- Bei untereinander unkorrelierten unabhängigen Variablen sind konditionale additive Effekte gleich den bivariaten Effekten, während nicht-additive konditionale Effekte von den bivariaten Effekten abweichen können!

Fehlspezifikationen

- Von einer Fehlspezifikation wird gesprochen, wenn das gewählte Kausalmodell nicht dem wahren Modell entspricht.
- Fehlspezifizierte Modelle basieren auf falscher Theorie!
- Auch fehlspezifizierte Modelle liefern statistische Ergebnisse, die auch signifikant sein können. Die Fehlerhaftigkeit deckt sich dann beispielsweise erst bei einer Hinzunahme weiterer Variablen oder bei einer Prüfung des Modells an neuen Daten auf.
- Die Konstruktion von Kausalmodellen sollte immer theoriebasiert erfolgen!!
- Statistik kann die Theorie nur messen und damit pr
 üfen oder quantifizieren.


Modelle in der Praxis: (m)ein Beispiel


Forschungsfrage:

Liegt der erhöhte Stress im Lehrberuf nicht im Beruf selbst, sondern in den Persönlichkeitsprofilen derer begründet, die ihn ergreifen?

Modelle in der Praxis: Absicht zur DLB-Nutzung

Modelle in der Praxis: Absicht zur DLB-Nutzung

Was Sie am Ende der Woche können sollten

- **Kern**: Sie analysieren theoretische Vorüberlegungen auf eine Weise, dass Sie sie in Pfeilgrafiken modellieren und daran anknüpfend statistisch untersuchen können.
- Sie erklären den Unterschied zwischen additiven und nicht-additiven Kausaleffekten.
- Sie beschreiben additive Kausaleffekte und drücken Sie als Pfeilgrafik aus.
- Sie beschreiben nicht-additive Kausaleffekte und drücken Sie als Pfeilgrafik aus.
- Sie fassen theoretische Erwartungen in Pfeilgrafiken zusammen.
- Sie schlagen zu bestehenden Kausalmodellen das zu nutzende Statistische Verfahren vor.
 Meine Notizen:
- Sie untersuchen Kausalmodelle anderer hinsichtlich ihrer
 Passung zu den folgenden statistischen Analysen.