Test Exam

- 1. (4P) Let $U \sim \mathcal{U}_{(-1,1)}$ and define $X := \sqrt{1 U^2}$.
 - (a) Compute the (cumulative) distribution function of X.
 - (b) Derive the density function of X from (a).
- 2. (3P) Let $(X_n)_{n\geq 1}$ be a sequence of independent, identically distributed random variables with $X_n \sim \mathcal{U}_{(0,1)}$.

Show

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} X_k}{\sum_{k=1}^{n} X_k^3} = 2$$

almost surely.

- 3. (3P) Let $\varphi_X(t) := (\cos(t))^n$ be the characteristic function of some random variable X.
 - (a) Show that X is discrete and identify the law of $\frac{X+n}{2}$ using φ_X .
 - (b) Compute the expectation of X.

 $Hint: 2\cos(t) = \exp(it) + \exp(-it)$

- 4. (6P) Let X be non-negative and $0 < \mathbb{E}[X^2] < +\infty$.
 - (a) Prove that

$$\mathbb{P}(X > 0) \ge \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]}.$$

(b) Consider now $X \sim Poi(\lambda), \lambda > 0$. Use (a) to show

$$\exp(\lambda) \ge 1 + \lambda.$$

Hint: Consider $\mathbb{E}[X\mathbb{1}_{\{X>0\}}]^2$ and apply a famous inequality.

5. (4P) Let $(Z_n)_{n\geq 1}$ be a sequence of random variables, such that for $0<\alpha<2$

$$\mathbb{P}(Z_n = 0) = 1 - 2n^{-\alpha}, \quad \mathbb{P}(Z_n = \pm n) = n^{-\alpha}.$$

Show, $(Z_n)_{n\geq 0}$ converges in probability to 0, but does not converge to zero in L^2 .